GARISSA UNIVERSITY

UNIVERSITY EXAMINATION $2017 / 2018$ ACADEMIC YEAR ONE FIRST SEMESTER EXAMINATION

SCHOOL OF BUSINESS AND ECONOMICS

FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION
COURSE CODE: MBA 817
COURSE TITLE: OPERATION RESEARCH

EXAMINATION DURATION: 3 HOURS

DATE: 07/12/17

INSTRUCTION TO CANDIDATES

- The examination has FIVE (5) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FOUR (4) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) Briefly explain the following terms
i. Objective function
[2 marks]
ii. Constraints [2 marks]
iii. Optimum solution
(b) The manager of a bank observes that on the average 18 customers are served by a cashier in a hour. Assuming that the service time has are experimental distribution, what is the probability that;
i. A customer shall be free within 3 minutes
ii. A customer shall be serviced in more than 12 minutes
(c) Briefly explain the number of possibilities when picking up from the waiting line for service

QUESTION TWO

(a) Briefly explain the steps contained in solving a transportation problem
(b) Solve the following transportation problem. Obtain the initial solution by NW corner rule.

		TO				Supply
		1	2	3	4	
From	A	7	3	8	6	60
	B	4	2	5	10	100
	C	2	6	5	1	40
Demand		20	50	50	80	200

QUESTION THREE

(a) Linear programming problem is based on specific assumptions. Highlight and explain these assumptions
(b) Solve graphically the following LPP

Maximize $Z=4 x+5 y$
Subject to constraints

$$
\begin{aligned}
& 2 x+3 y \leq 12 \\
& 2 x+y \leq 8
\end{aligned}
$$

And $x, y \geq 0$

QUESTION FOUR

(a) Two firms are competing for business. Whatever firm A gains, B firm loses. The table given below shows advertising strategies of both the firms and utilities to firm A for various market shares in percentages (assuming this to be a zero sum game):

Firm A's Utility
Firm B

		Press	Radio	T.V.
	Press	60	75	40
Firm A	Radio	75	75	60
	T.V.	60	70	70

Find optimal strategies for both firms and expected percentage of market shares to firm A.
(b) Determine the break-even sales in the following case:

Product

		A	B
Sale (Units)	5000	6000	C
Unit selling price	10	15	4000
(Ksh.)		18	
Unit variable cost (Ksh.)	4	13	

Fixed cost (Ksh) 4000

QUESTION FIVE

(a) Outline and explain the general assumptions made to solve the sequencing problems.
(b) Discuss the operating characteristics of queuing system

