GARISSA UNIVERSITY

UNIVERSITY EXAMINATION $2017 / 2018$ ACADEMIC YEAR ONE FIRST SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: CHE 112
COURSE TITLE: INTRODUCTION TO ANALYTICAL CHEMISTRY

EXAMINATION DURATION: 3 HOURS

DATE: 01/12/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) Define the following Analytical Chemistry terms
i. Precision
ii. Accuracy
iii. Determinate and indeterminate errors
iv. Back titration
(b) What is the primary ionization technique in the following Analytical techniques
i. GC-MS
ii. LC-MS
iii. ICP-MS
(c) State any three (3) electro- analytical techniques [3 marks]
(d) How many milliliters of 0.100 M KI are needed to react with 40.00 ml of $0.0400 \mathrm{M} \mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)$ if the reaction is: $\mathrm{Hg}_{2}{ }^{2+}+2 \mathrm{I}^{-} \mathrm{Hg}_{2} \mathrm{I}_{2}(\mathrm{~s})$
(e) Differentiate between systematic and random errors in analytical analysis

QUESTION TWO

(a) Describe the following terms and state their acceptable values in a set of analytical analysis data
i. LOD
ii. LOQ
(b) Describe the basic steps to be followed in a chemical analysis in Analytical Chemistry
(c) Which technique can be used to separate a soluble solid from the liquid it is dissolved in
(d) State four desirable properties of standard solutions for Chemical Analysis
(f) Define the following terms as used in analytical chemistry
i. Precision
ii. Accuracy
(g) State the three types of chromatography and give their main features.

QUESTION THREE

(a) Name two extraction techniques of liquid- liquid mixtures
(b) Differentiate between
i. Qualitative analysis
ii. Quantitative analysis
(c) What is the most commonly used stationary phase in reversed phase (RP) HPLC? Give the specific name
(d) What is the most commonly used stationary phase in gas-liquid chromatography GLC? Specify name
(e) Which technique can be used to separate an insoluble solid from a liquid
(f) Name 4 Important requirements for primary standards to have

QUESTION FOUR

An ore containing magnetite, $\mathrm{Fe}_{3} \mathrm{O}_{4}$, was analyzed by dissolving a $1.5419-\mathrm{g}$ sample in concentrated HCl , giving a mixture of Fe^{2+} and Fe^{3+}. After adding HNO_{3} to oxidize any Fe^{2+} to $\mathrm{Fe}^{3+,}$ the resulting solution was diluted with water and the Fe^{3+} precipitated as $\mathrm{Fe}(\mathrm{OH})_{3}$ by adding NH_{3}. After filtering and rinsing, the residue was ignited, giving 0.8525 g of pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$. Calculate the $\% \mathrm{w} / \mathrm{w} \mathrm{Fe}_{3} \mathrm{O}_{4}$ in the sample.
[5 marks]

QUESTION FIVE

(a) Two students titrated a 100.00 mL sample of HCl with an unknown concentration with a standardized 0.1339 M NaOH sample.

$$
\mathrm{HCl}+\mathrm{NaOH} \rightleftharpoons \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

The students obtained the following results:
Student A: $23.17 \mathrm{~mL}, 22.69 \mathrm{~mL}, 23.25 \mathrm{~mL}, 22.97 \mathrm{~mL}$
Student B: $25.25 \mathrm{~mL}, 25.19 \mathrm{~mL}, 25.23 \mathrm{~mL}, 25.23 \mathrm{~mL}$
i. Determine the average (mean) and standard deviation for each student's data set [5 marks]
ii. Which student was more precise? Explain
iii. If the unknown HCl sample has a concentration of 0.0030 M , which student is more accurate
iv. Are the results (titration volumes) obtained by the two students significantly different at the 95% confidence level (Given: $S_{\text {pooled }}=0.18$)
v. Using the Q test, decide if the second measurement (22.69 mL) for student A should be discarded
[3 marks]

QUESTION SIX

In the lab a student got the following 4 numbers for the concentration of chloride in a
Sample: 0.1015, 0.0991, 0.1016, and 0.1017. Calculate the following using the above data;
i. The mean [3 marks]
ii. The standard deviation
iii. Check whether any point should be excluded at the 95% confidence level. Tabulated $\mathrm{Q} 95 \%=$ 0.829 for 4 observations

