

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR ONE FIRST SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: CHE 112

COURSE TITLE: INTRODUCTION TO ANALYTICAL CHEMISTRY

EXAMINATION DURATION: 3 HOURS

DATE: 01/12/17 TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of FOUR (4) printed pages

please turn over

QUESTION ONE (COMPULSORY)

(a) Define the following Analytical Chemistry terms

[8 marks]

- i. Precision
- ii. Accuracy
- iii. Determinate and indeterminate errors
- iv. Back titration

(b) What is the primary ionization technique in the following Analytical techniques

[6 marks]

- i. GC-MS
- ii. LC-MS
- iii. ICP-MS
- (c) State any three (3) electro- analytical techniques

[3 marks]

- (d) How many milliliters of 0.100M KI are needed to react with 40.00 ml of 0.0400 M Hg₂(NO₃) if the reaction is: $Hg_2^{2+} + 2I^{-}Hg_2I_2(s)$ [6 marks]
- (e) Differentiate between systematic and random errors in analytical analysis

[2 marks]

QUESTION TWO

(a) Describe the following terms and state their acceptable values in a set of analytical analysis data

[3 marks]

- i. LOD
- ii. LOO
- (b) Describe the basic steps to be followed in a chemical analysis in Analytical Chemistry [3 marks]
- (c) Which technique can be used to separate a soluble solid from the liquid it is dissolved in [1 mark]
- (d) State four desirable properties of standard solutions for Chemical Analysis [2 marks]
- (f) Define the following terms as used in analytical chemistry

[2 marks]

- i. Precision
- ii. Accuracy
- (g) State the three types of chromatography and give their main features.

[4 marks]

OUESTION THREE

(a) Name two extraction techniques of liquid-liquid mixtures

[1 mark]

(b) Differentiate between

[4 marks]

- i. Qualitative analysis
- ii. Quantitative analysis
- (c) What is the most commonly used stationary phase in reversed phase (RP) HPLC? Give the specific name

 [2 marks]
- (d) What is the most commonly used stationary phase in gas-liquid chromatography GLC? Specify name [2 marks]
- (e) Which technique can be used to separate an insoluble solid from a liquid [2 marks]
- (f) Name 4 Important requirements for primary standards to have

[4 marks]

QUESTION FOUR

An ore containing magnetite, Fe_3O_4 , was analyzed by dissolving a 1.5419-g sample in concentrated HCl, giving a mixture of Fe^{2+} and Fe^{3+} . After adding HNO₃ to oxidize any Fe^{2+} to Fe^{3+} , the resulting solution was diluted with water and the Fe^{3+} precipitated as $Fe(OH)_3$ by adding NH₃. After filtering and rinsing, the residue was ignited, giving 0.8525 g of pure Fe_2O_3 . Calculate the %w/w Fe_3O_4 in the sample.

OUESTION FIVE

(a) Two students titrated a 100.00 mL sample of HCl with an unknown concentration with a standardized 0.1339 M NaOH sample.

$$HCl + NaOH \longrightarrow NaCl + H_2O$$

The students obtained the following results:

Student A: 23.17 mL, 22.69 mL, 23.25 mL, 22.97 mL

Student B: 25.25 mL, 25.19 mL, 25.23 mL, 25.23 mL

- i. Determine the average (mean) and standard deviation for each student's data set [5 marks]
- ii. Which student was more precise? Explain

[2 marks]

iii. If the unknown HCl sample has a concentration of 0.0030 M, which student is more accurate

[2 marks]

- iv. Are the results (titration volumes) obtained by the two students significantly different at the 95% confidence level (Given: $S_{pooled} = 0.18$) [3 marks]
- v. Using the Q test, decide if the second measurement (22.69 mL) for student A should be discarded [3 marks]

QUESTION SIX

In the lab a student got the following 4 numbers for the concentration of chloride in a

Sample: 0.1015, 0.0991, 0.1016, and 0.1017. Calculate the following using the above data;

i. The mean [3 marks]

ii. The standard deviation [3 marks]

iii. Check whether any point should be excluded at the 95% confidence level. Tabulated Q 95% = 0.829 for 4 observations [9 marks]

