GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR ONE FIRST SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: MAT 110 / MAT113
COURSE TITLE: BASIC / DIFFERENTIAL CALCULUS
EXAMINATION DURATION: 3 HOURS

DATE: 04/12/17
TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) Evaluate the following limits:
i. $\lim _{x \rightarrow 4}\left\{\frac{x^{2}-5 x+4}{x^{2}-16}\right\}$
[3 Marks]
ii. If $(x+y)=\sin (x+y)$, show that $\frac{d y}{d x}=-1$
[4 Marks]
(b) Find the derivatives of the following
i. $y=\sqrt{\left(1+x^{2}\right)}$
[3 Marks]
ii. $y=x^{3 x+1}$
[3 Marks]
iii. $y=\cos ^{-1} 2 x$
[3 Marks]
(c) If $y=\cos 2 t$ and $x=\sin t$, find the equation of the normal to the curve at

$$
t=\frac{\pi}{6}
$$

[4 Marks]
(d) A ladder 13 meters long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at a rate of 3 meters per second. How fast is its height on the wall decreasing when the foot of the ladder is 5 meters away from the wall [5 marks]

QUESTION TWO

(a) Find the interval in which the function $f(x)=x^{3}-6 x^{2}+3 x-5$ is concave up and concave down.
[4 Marks]
(b) Find a point on the graph $y=2 x^{3}$ where the tangent is parallel to the chord joining $(1,2)$ and $(3,54)$ using mean value theorem.
(c) Given that $f(x)=\frac{p x+q}{x+2}, \lim _{x \rightarrow 0}\{f(x)\}=3$ and $\lim _{x \rightarrow \infty}\{f(x)\}=4$, find the value of $f(-3)$

QUESTION THREE

(a) Differentiate $y=3 x^{2}-2$ from the definition of a derivative or using the first principles.
(b) Find the gradient of the curve, $x=\frac{t}{1+t}, y=\frac{t^{3}}{1+t}$ at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$
(c) Find the equation of the tangent and normal to the curve $x^{3}+x y^{2}+y^{3}-11=0$ at the point ${ }^{x}=2, y=1$
[6 Marks]

QUESTION FOUR

(a) The perimeter of a triangle is 10 cm . If one of the sides is 4 cm , what are other the other two sides for maximum area of the triangle
[4 Marks]
(b) Find the maximum and minimum values of the function $y=\frac{(x-1)(x-6)}{(x-10)}$ and distinguish them.
(c) Find the point of inflexion on the graph of the function $y=x^{4}-54 x^{2}-2 x$.

QUESTION FIVE

(a) Differentiate
i. $y=\frac{\sin x}{x^{2} \cos 2 x}$
[4 Marks]
ii. (The radius of a variable sphere is increasing at the rate of 3 cm per second. How fast is volume of the cube increasing when the radius is 10 cm long
(b) A window is in the form of a rectangle, surmounted by a semi-circle. If the perimeter of the window is to be 30 meters, find the dimensions so that the greatest possible amount of light may be admitted
[8 Marks]

QUESTION SIX

(a) Differentiate $y=a^{x}$
[3 Marks]
(b) Verify mean value theorem for the function $f(x)=(x-1)(x-2)(x-3)$ in the interval $[0,4]$ and find c.
[5 Marks]
(c) It is given that for the function $f(x)=x^{3}-p x+q x+5$ on [1,3], Rolle's theorem holds with $c=2+\frac{1}{\sqrt{3}}$. Find the values of p and q.

