

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>ONE</u> <u>FIRST</u> SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: PHY 211 / PHY 212

COURSE TITLE: VIBRATION AND WAVES / OSCILLATION AND WAVES

EXAMINATION DURATION: 3 HOURS

DATE: 05/12/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of FOUR (4) printed pages

please turn over

QUESTION ONE (COMPULSORY)

(a)	i) what is a wave	[1 mark]	
	ii) Discuss the difference between electromagnetic and mechanical waves	[2 marks]	
(b)	The equation of a transverse wave travelling on a rope is given by		
	$y = 5\sin\pi (0.02x-4.00t)$, where y and x are expressed in centimeters and t is in seconds	s. Find the	
	i. Frequency	[2 marks]	
	ii. velocity	[2 marks]	
(c)	c) The speed of a wave on a string is given by $V = \sqrt{\frac{F}{\mu}}$. Show that the right-hand side of this		
	equation has the units of speed.	[2 marks]	
(d)	Two strings are tuned to fundamentals of $f_1 = 4800$ Hz and $f_2 = 32$ Hz. Their lengths are	0.05 and	
	2.0m, respectively. If the tension in these two strings is the same, find the ratio of the n	nasses per	
	unit length of the two strings.	[3 marks]	
(e)	i) What is meant by simple harmonic motion	[1 mark]	
	ii) Show that when a standing wave is formed, each point on the string is undergoing S	HM	
	transverse to the string	[2 marks]	
(f)	A sinusoidal wave on a string travelling in the +x direction at 8m/s has a wavelength 2m.		
	i) Find its wave number and frequency	[2 marks]	
	ii) If the amplitude is 0.2m, and the point $x = 0$ on the string is at its equilibrium position	on (y =0) at	
	time $t = 0$, find the equation for the wave.	[2 marks]	
(g)	(g) A tuning fork of frequency 300c/s gives 2 beats/s with another fork of unknown frequency.		
	On loading the unknown fork the beats increase to 5/s, while transferring the load to the	e fork of	
	known frequency increases the number of beats per second to 9. Calculate the frequenc	y of the	
	unknown fork (unloaded) assuming the load produces the same frequency change in ea	ch fork.	
		[3 marks]	
	An open organ pipe is suddenly closed with the result that the second overtone of the cl	losed pipe	
	is found to be higher in frequency by 100 vibrations/s than the first overtone of the origi	nal pipe.	

Find the fundamental frequency of the open pipe

[3 marks]

- (a) A particle which executes SHM along a straight line has its motion represented by $x = 4\sin(\pi t/3 + \pi/6)$. Find
 - i. Time period; [2 marks]
 - ii. Frequency; [2 marks]
 - iii. Velocity, at t = 1s, x being in cm [2 marks]
- (b) For ordinary conversation, the intensity level is given as 60dB. Find the intensity of the wave
 - [4 marks]
- (c) Show that if the tension in a string if F and its linear density is μ , then the speed v of a transverse pulse travelling on it is given by $v = \sqrt{\frac{F}{\mu}}$ [5 marks]

QUESTION THREE

(a)	Show that the superposition of the waves $y_1 = A\sin(kx - \omega t)$ and $y_2 = 3A\sin(kx+\omega t)$ is a pure	
	standing wave plus a travelling wave in the negative direction along the x-axis.	[4 marks]
	ii) Find the amplitude of the standing wave and the travelling wave.	[2 marks]
(b)	i) What is Doppler effect	[1 mark]
	ii) A railway engine whistles as it approaches a tunnel, and the sound is reflected b	back by the wall

of the rock at the opening. If the train is proceeding at a speed of 72km/h and if the effect of the wind be neglected, find the ratio of the relative frequencies of the reflected and direct sounds as heard by the driver of the engine. [4 marks]

(c) i) What is the meaning of resonance [1 mark]ii) Give three examples of resonance effect [3 marks]

QUESTION FOUR

(a) Sketch the first and second harmonic standing waves on a stretched string of length L. Deduce an expression for the frequencies of the family of standing waves that can be excited on the string

[6 marks]

[1 mark]

- (b) The wave function of a standing wave on a string that is fixed at both ends is given in SI units by y(x,t) = (0.024)sin(62.8x)cos(471t). Find the speed of the waves on the string, and the distance between nodes for the standing wave. [5 marks]
- (c) i) what are beats

Ser. No. EDU 052/17

ii) When two notes are sounded a beat frequency of 3Hz is heard. If one note is 600Hz. What are the possible frequencies of the other [3 marks]

QUESTION FIVE

- (a) Two trains move away from each other at a speed of 25m/s relative to the earth's surface. One gives a 520Hz signal. Find the frequency heard by the observer on the other train (sound velocity=330m/s). [6 marks]
- (b) A sound source from a motionless train emits a sinusoidal wave with a source frequency of fs = 514Hz. Given that the speed of sound in air is 340m/s and that you are a stationary observer. Find the wavelength of the wave you observe

i.	When the train is at rest	[2 marks]
ii.	When the train is moving towards you at 15m/s	[3 marks]
iii.	When the train is moving away from you at 15m/s	[3 marks]

QUESTION SIX

- (a) A progressive wave travelling along a string has maximum amplitude A = 0.0821m, angular frequency $\omega = 100$ rad/s and wave number k = 22.0rad/m. If the wave has zero amplitude at t =0 and x =0 for its starting conditions
 - State the wave function that represents the progressive wave motion for this wave travelling in the negative x-direction. [2 marks]
 - ii. State the wave function for this wave travelling in the positive x-direction [2 marks]
 - iii. Find the wavelength (λ) , period (T) and the speed (v) of this wave. [3 marks]
 - iv. (Find its amplitude at a time t = 2.5s at a distance x = 3.2m from its origin, for this wave travelling in the negative x-direction. [2 marks]
- (b) A man standing in front of mountain at a certain distance beats a drum at regular intervals. The drumming rate is gradually increased and he finds the echo is not heard distinctly when the rate becomes 40/min. He then moves nearer to the mountain by 90m and finds that the echo is again not heard when the drumming rate becomes 60/min. Calculate
 - i. The distance between the mountain and the initial position of the man and the mountain [3 marks]
 ii. The velocity of sound [3 marks]

