GARISSA UNIVERSITY

UNIVERSITY EXAMINATION $2017 / 2018$ ACADEMIC YEAR ONE FIRST SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: PHY 211 / PHY 212
COURSE TITLE: VIBRATION AND WAVES / OSCILLATION AND WAVES
EXAMINATION DURATION: 3 HOURS

DATE: 05/12/17
TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) i) what is a wave
ii) Discuss the difference between electromagnetic and mechanical waves
(b) The equation of a transverse wave travelling on a rope is given by
$y=5 \sin \pi(0.02 x-4.00 t)$, where y and x are expressed in centimeters and t is in seconds. Find the
i. Frequency
ii. velocity
(c) The speed of a wave on a string is given by $V=\sqrt{\frac{F}{\mu}}$. Show that the right-hand side of this equation has the units of speed.
(d) Two strings are tuned to fundamentals of $f_{1}=4800 \mathrm{~Hz}$ and $f_{2}=32 \mathrm{~Hz}$. Their lengths are 0.05 and 2.0 m , respectively. If the tension in these two strings is the same, find the ratio of the masses per unit length of the two strings.
(e) i) What is meant by simple harmonic motion
ii) Show that when a standing wave is formed, each point on the string is undergoing SHM transverse to the string
(f) A sinusoidal wave on a string travelling in the $+x$ direction at $8 \mathrm{~m} / \mathrm{s}$ has a wavelength 2 m .
i) Find its wave number and frequency
[2 marks]
ii) If the amplitude is 0.2 m , and the point $\mathrm{x}=0$ on the string is at its equilibrium position $(\mathrm{y}=0)$ at time $t=0$, find the equation for the wave.
[2 marks]
(g) A tuning fork of frequency $300 \mathrm{c} / \mathrm{s}$ gives 2 beats/s with another fork of unknown frequency.

On loading the unknown fork the beats increase to $5 / \mathrm{s}$, while transferring the load to the fork of known frequency increases the number of beats per second to 9 . Calculate the frequency of the unknown fork (unloaded) assuming the load produces the same frequency change in each fork.

An open organ pipe is suddenly closed with the result that the second overtone of the closed pipe is found to be higher in frequency by 100 vibrations/s than the first overtoneof the original pipe. Find the fundamental frequency of the open pipe

QUESTION TWO

(a) A particle which executes SHM along a straight line has its motion represented by $x=$ $4 \sin (\pi t / 3+\pi / 6)$. Find
i. Time period; [2 marks]
ii. Frequency;
iii. Velocity, at $\mathrm{t}=1 \mathrm{~s}, \mathrm{x}$ being in cm
(b) For ordinary conversation, the intensity level is given as 60 dB . Find the intensity of the wave
[4 marks]
(c) Show that if the tension in a string if F and its linear density is μ, then the speed v of a transverse pulse travelling on it is given by $V=\sqrt{\frac{F}{\mu}}$

QUESTION THREE

(a) i) Show that the superposition of the waves $y_{1}=A \sin (k x-\omega t)$ and $y_{2}=3 A \sin (k x+\omega t)$ is a pure standing wave plus a travelling wave in the negative direction along the x -axis.
ii) Find the amplitude of the standing wave and the travelling wave.
(b) i) What is Doppler effect
ii) A railway engine whistles as it approaches a tunnel, and the sound is reflected back by the wall of the rock at the opening. If the train is proceeding at a speed of $72 \mathrm{~km} / \mathrm{h}$ and if the effect of the wind be neglected, find the ratio of the relative frequencies of the reflected and direct sounds as heard by the driver of the engine.
(c) i) What is the meaning of resonance
ii) Give three examples of resonance effect

QUESTION FOUR

(a) Sketch the first and second harmonic standing waves on a stretched string of length L. Deduce an expression for the frequencies of the family of standing waves that can be excited on the string
[6 marks]
(b) The wave function of a standing wave on a string that is fixed at both ends is given in SI units by $y(x, t)=(0.024) \sin (62.8 x) \cos (471 t)$. Find the speed of the waves on the string, and the distance between nodes for the standing wave.
(c) i) what are beats

Ser. No. EDU 052/17
ii) When two notes are sounded a beat frequency of 3 Hz is heard. If one note is 600 Hz . What are the possible frequencies of the other

QUESTION FIVE

(a) Two trains move away from each other at a speed of $25 \mathrm{~m} / \mathrm{s}$ relative to the earth's surface. One gives a 520 Hz signal. Find the frequency heard by the observer on the other train (sound velocity $=330 \mathrm{~m} / \mathrm{s}$).
[6 marks]
(b) A sound source from a motionless train emits a sinusoidal wave with a source frequency of $\mathrm{fs}=$ 514 Hz . Given that the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ and that you are a stationary observer. Find the wavelength of the wave you observe
i. When the train is at rest
ii. When the train is moving towards you at $15 \mathrm{~m} / \mathrm{s}$
iii. When the train is moving away from you at $15 \mathrm{~m} / \mathrm{s}$

QUESTION SIX

(a) A progressive wave travelling along a string has maximum amplitude $\mathrm{A}=0.0821 \mathrm{~m}$, angular frequency $\omega=100 \mathrm{rad} / \mathrm{s}$ and wave number $\mathrm{k}=22.0 \mathrm{rad} / \mathrm{m}$. If the wave has zero amplitude at $\mathrm{t}=0$ and $\mathrm{x}=0$ for its starting conditions
i. State the wave function that represents the progressive wave motion for this wave travelling in the negative x -direction.
ii. State the wave function for this wave travelling in the positive x -direction
iii. Find the wavelength (λ), period (T) and the speed (v) of this wave.
iv. (Find its amplitude at a time $\mathrm{t}=2.5 \mathrm{~s}$ at a distance $\mathrm{x}=3.2 \mathrm{~m}$ from its origin, for this wave travelling in the negative x -direction.
(b) A man standing in front of mountain at a certain distance beats a drum at regular intervals. The drumming rate is gradually increased and he finds the echo is not heard distinctly when the rate becomes $40 / \mathrm{min}$. He then moves nearer to the mountain by 90 m and finds that the echo is again not heard when the drumming rate becomes $60 / \mathrm{min}$. Calculate
i. The distance between the mountain and the initial position of the man and the mountain
ii. The velocity of sound

