

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>ONE</u> <u>FIRST</u> SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: PHY 113

COURSE TITLE: HEAT AND THERMODYNAMICS

EXAMINATION DURATION: 3 HOURS

DATE: 05/12/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room

1

Do not write on this paper

This paper consists of FOUR (4) printed pages

please turn over

USE THE FOLLOWING CONSTANTS WHERE NECESSARY

Specific heat capacity of water 4185J/kg/k

Universal gas constant R= 8.314 J/(mol.k)

Wien's constant 2.9x10⁻³ m.K

Stefan Boltzmann constant 5.67x10⁻⁸W/m²k⁴

$$\gamma = \frac{C_{P}}{C_{V}}$$

QUESTION ONE (COMPULSORY)

(a) State

	i.	Stefans-Boltzman law	[1 mark]
	ii.	First law of thermodynamics	[1 mark]
	iii.	Zeroth law	[1 mark]
(b)	When is a ther	modynamic system said to be in a state of equilibrium	[2 marks]
(c)	Define the foll	owing processes	
	i.	Quasi-static process	[1 mark]
	ii.	Isothermal process	[1 mark]
(d)	(d) Show that the coefficient of area expansivity is given by two times the coefficient of linear		
	expansion		[4 marks]
(e)	(i) state Wien'	s displacement law	[1 mark]
	(ii) Calculate the temperature of the solar surface if the radiant intensity at the sun's		
	surfac	e is 63 MW/m^2 .	[3 marks]

- (f) The reading on the pressure scale at steam and ice points are 800mm and 200mm respectively.
 Determine the equivalent Temperature (in °C) when it reads 450mm [3 marks]
- (g) Show that the work done on a gas during an adiabatic compression from initial conditions (P1, V1) to final conditions (P2, V2) is given by the equation [4 marks]

$$W = \frac{1}{\gamma - 1} (P_2 V_2 - P_1 V_1)$$

(h) A gas is heated and allowed to expand doing some work equal to 1.01X10⁵J. If 3X10⁵J of heat is used to expand the gas. What is the change in internal energy of the gas [3 marks]

Ser. No. EDU 056/17 QUESTION TWO

[2 marks]

- (a) Define the term thermal equilibrium
- (b) A 5.0-gram lead bullet traveling at 300 m/s is stopped by a large tree. If half the
 - i. kinetic energy of the bullet is transformed into internal energy and remains with the
 - ii. Bullet while the other half is transmitted to the tree. Calculate the increase in temperature of the bullet [4 marks]
- (c) Define the terms latent heat and specific heat capacity
- (d) A gas undergoes a series of pressure and volume changes as shown below. Calculate

(f) Define the terms adiabatic changes and Isothermal process	[2 marks]
i. Work done by the gas along the path abc	[2 marks]
ii. Work done along the path cda	[3 marks]

(g) State the second law of thermodynamics

QUESTION THREE

(a) i) Show that work done in compressing an ideal gas at constant temperature is given by

$$W=nRT \ln \frac{v_2}{v_1}$$
 [5 marks]

(ii) How much work is required to compress isothermally 2g of oxygen initially at STP to half its original volume? (Assume that oxygen behaves as an ideal gas) [5 marks]

(b) Starting with the first law of thermodynamics dQ = dU + PdV and using the equation of state, PV = RT; show that the equation of reversible adiabatic change for ideal gas is given by

$$PV^{\gamma} = Cons \tan t$$
 [5 marks]

[1 mark]

QUESTION FOUR

- (a) Define the term blackbody [1 mark]
 (b) What happens to radiant heat when it falls on a body [3 marks]
 (c) The tungsten filament of an electric lamp is of length 0.5m, and diameter 6x10⁻⁵m. The power rating of the lamp is 60W. Assuming the radiation from the filament is 80% that of a blackbody at the same temperature, find the steady temperature of the filament [4 marks]
 (d) A closed metal vessel contains water at 75 °C. the vessel has a surface area of 0.5m² and a uniform thickness of 4mm. if the outside temperature is 15 °C and the thermal conductivity of the
- (e) Using the kinetic theory of gases show that the root-mean square speed is given by

metal is 400W/M/K, calculate the heat lost per minute by the metal

$$v_{rms} = \sqrt{\frac{3 RT}{M}}$$
 [3 marks]

QUESTION FIVE

- (a) $P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$ The symbols have their usual meaning Show the equation can also be written as $T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1}$ [6 marks]
- (b) 2g of oxygen gas initially at STP is adiabatically compressed to half its original volume, find the final values of:
 - i. The pressure and [3 marks]
 - ii. The temperature. Take the value of $\gamma = 1.4$ for oxygen [3 marks]
- (c) Calculate the quantity of heat conducted through 2m³ of a brick wall 12cm thick in 1 hour. If the temperature of one side is 8⁰C and on the other side is

 28° C(*Thermal conductivity of brick* = $0.13wm^{-1}k^{-1}$) [3 marks]

QUESTION SIX

(a) State the second law of thermodynamics				
(b) State the three parts of the heat engine				
(c) Write down the efficiency for a Carnot cycle as a function of				
i. The heat flows to and from the reservoirs and	[2 marks]			
ii. The temperatures of the two reservoirs	[2 marks]			
(d) d) Describe the working of an Carnot engine start by sketching this cycle in a standard				

P-V diagram. Explain the four steps of this cycle in terms of associated temperature and volume changes as well as the heat exchanged with external reservoirs. [7 marks]

4

[4 marks]