

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>ONE</u> <u>SECOND</u> SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: COM 217

COURSE TITLE:

EXAMINATION DURATION: 3 HOURS

DATE: /12/17

TIME: .00-.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of TWO (2) printed pages

please turn over

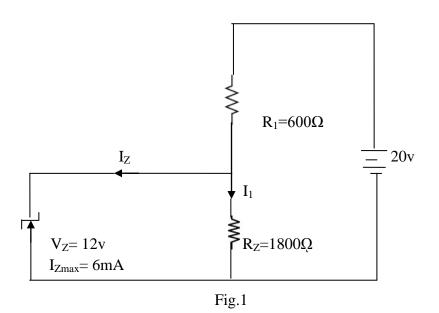
Ser. No. EDU 001/17 QUESTION ONE (COMPULSORY)

(a).

(b).	i.	Describe the formation of a pnp semiconduc	tor material . [2marks]
	ii.	Use the idea of free electrons to explain resistivity than conducting materials.	why semiconducting materials have higher [2 marks]
(c).	i.	Define electron mobility.	[1mark]
	ii.	An intrinsic semiconductor current (I) flow i	s due to electrons and holes
		$I = I_e + I_h = enV_eA + e\rho V_hA$	Where $e = electron charge$ n = no of electrons per unit volume of conductor $V_e = electron drift velocity$
			v_h =hole drift velocity
			ρ =hole density
		1	

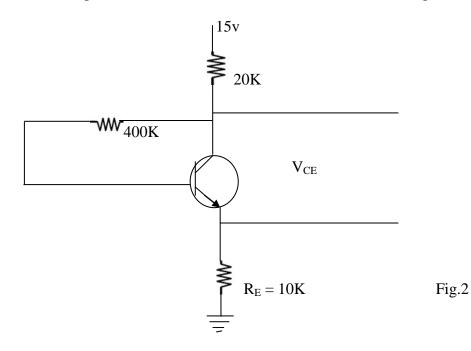
Differentiate between extrinsic and intrinsic semiconductor materials

Show that resistivity,
$$\rho = \frac{1}{en(\mu_e + \mu_h)}$$
 [3marks]


- iii. Mobilities of electrons and holes in a sample of intrinsic germanium at room temperature are $0.36m^2/v$ -s and $0.17m^2/v$ -s respectively. If the electron and hole densities are each equal to 2.5 x 10^{-19} m³, Calculate germanium conductivity [3marks]
- (d). Sketch and explain the common-emitter static input characteristic. [3 marks]
- (e). The base of pnp bipolar transistor is grounded. A battery is connected between the emitter and the base. Another battery is connected between the base and the collector. This is known as the common base configuration.
 - i. Draw the circuit indicating polarities of the batteries that would put the transistor in the forward active mode. Explain why you have chosen these polarities [5marks]
 - ii. Why is the emitter more heavilydoped? [2marks]
 - iii. How do the carriers that are emitted into the base reach the collector. [2marks]

[2 marks]

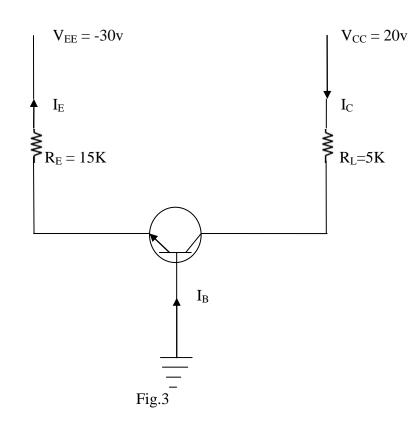
Ser. No. EDU 001/17 QUESTION 2 (15 MARKS)


(a).	Defin	e fabrication and state why an npn BJT is preferred.	[2marks]
(b).	Outlin	e the process of fabrication of a BJT transistor.	[6marks]
(c).	i.	State two applications of diodes.	[2marks]

ii. Determine if the zener diode in the fig.1 below is properly biased, find I_zand power dissipated by the diode. [5marks]

QUESTION 3 (15 MARKS)

- (a). Explain how temperature affects bias variations .
- (b). The circuit below represents abias connection. Use the circuit to answer questions that follow.


Good Luck – Exams Office

[2marks]

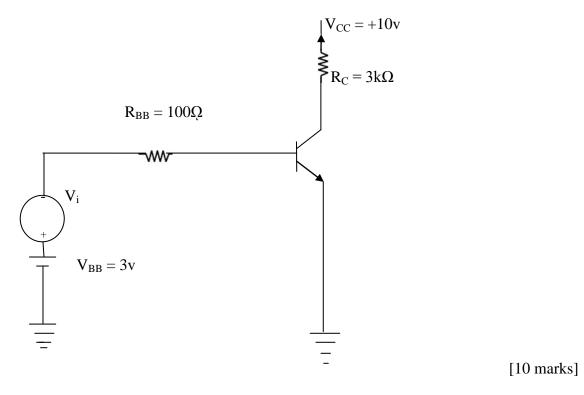
i.	Name the bias connection		[1mark]
ii.	Find		
	a).	I _{C(sat)}	[2 marks]
	b).	V _{CE}	[3 marks]
	c).	K_{β} neglect V_{BE} and take $\beta=100$	[2marks]
iii.	Define Quiescent point		[1mark]

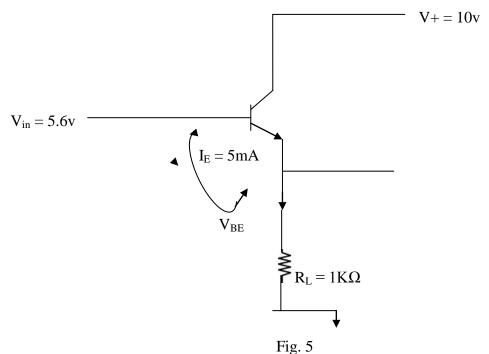
iv. For the circuit below draw the d.c load line and locate its Quiescent or dc working point.

[4 marks]

QUESTION 4 (15 MARKS)

- (a). State procedure for drawing ac equivalent circuits.
- (b). Determine the small signal AC voltage gain for the circuit below assuming β =100 and the output voltage taken at the collector terminal.




Fig.4

(c). State two equivalent active mode small signal circuit models for BJT. [2 marks]

QUESTION 5 (15 MARKS)

- (a) Small signal amplifiers also referred to as voltage amplifiers have three main properties. State and define these properties. [6marks]
- (b). Consider the circuit below. Calculate the voltage gain $A_{V=} \frac{V_{out}}{V_{in}}$ (Room temperature value $V_T=25$ mV). [4 marks]

[3marks]

1 ig. .

(c). i. State two applications of a UJT.	
--	--

ii. A one phase half wave rectifier supplies power to a $1K\Omega$ load the input supply voltage is 200 V_{rms}. Neglecting forward resistance of the diode, calculate V_{dc} and ripple voltage_(rms value) [3marks]

QUESTION 6 (15 MARKS)

(a).	State the symbol and function of a thyristor.		[2 marks]
(b).	i.	Briefly describe the operations of a thyristor.	[3 marks]
	ii.	Name two applications of silicon controlled rectifiers (SRC).	[2 marks]
(c).	What is the difference between UJT and FET.[2 m]		[2 marks]
(d).	A given silicon UJT has an inter base resistance of 10K, $R_B = 6K$ with $I_E = 0$. Find		
	i.	UJT current if $V_{BB} = 20V$ and V_E is less than V_P	[2 marks]
	ii.	Peak point voltages, V _P	[3 marks]
(e).	State	the function of DIACS.	[1 mark]

Good Luck – Exams Office

[2marks]