

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>TWO</u> <u>FIRST</u> SEMESTER EXAMINATION

SCHOOL BIOLOGICAL AND PHYSICAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: CHE 201e

COURSE TITLE: CHEMICAL ANALYSIS AND STRUCTURE DETERMINATION

EXAMINATION DURATION: 3 HOURS

DATE: 07/12/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of SIX (6) printed pages

please turn over

QUESTION ONE (COMPULSORY)

(a) Define the following Analytical Chemistry terms of Analysis				
i.	Adjusted retention time (t _r '):			
ii.	Spectrophotometry			
iii.	Fluorescence and Phosphorescence			
iv.	Resolution in chromatography			
(b) Give 2 practical application each of the following techniques of analysis: [8 marks]				
i.	Potentiomentry			
ii.	Voltammetry			
iii.	GC-MS			
iv.	NMR			
(c) A 5.00 x 10^{-4} M solution of an analyte is placed in a sample cell that has a cell pathof 1.00 cm.				
When measured at a wavelength of 490 nm, what is the absorbance if analyte's molar absorptivity				
at this wavelength is $676 \text{ cm}^{-1} \text{ M}^{-1}$? [3 marks]				

(d) State 6 points that should be considered when choosing an instrument for any measurement or analysis? [6 marks]

QUESTION TWO

- (a) Name three different interphases of analytical techniques of chemical analysis [3 marks]
- (b) Name three most commonly Calibration methods in an analytical analysis [3 marks]
- (c) Why are electrochemical methods of analysis preferred more as compared to other techniques like spectroscopic and chromatography [1 mark]
- (e) Name 4 electro-analytical techniques of Chemical analysis [2 marks]
- (f) Name the 3 different ionization modes in mass spectrometry and illustrate with examples of each

[6 marks]

QUESTION THREE

(a) Look at the mass spectra of benzoic acid (C₆H₅COOH)(Figure 1) and identify the ions responsible for the major peaks [8 marks]

(b) Look at the mass spectra of methyl benzoate ($C_6H_5COOCH_3$) (Figure 2) and identify the ions responsible for the major peaks. [7 marks]

QUESTION FOUR

Using the below low-resolution NMR spectra and information given, suggest a possible structure for each substance. Figure 3 shows the ¹H NMR spectrum of a hydrocarbon [15 marks]

Chemical shift	Integral	Ratio
7.4 δ	23 mm	5
2.8 δ	9 mm	2
1.4 δ	14 mm	3

Figure 3

QUESTION FIVE

The spectra below are IR of ethanoic acid, CH_3COOH (Figure-4), and ethanoic anhydride, (CH_3CO) ₂₀ (Figure-5). Draw the full structural formulas for both compounds and then determine, giving reasons, which spectrum is due to which compound. **[15 marks]**

QUESTION SIX

(a) The following data were obtained for four compounds separated on a 20-m capillary column.

Compound	T _r (min)	W (min)
Α	8.04	0.15
В	8.26	0.15
С	8.43	0.16

	i.	Calculate the number of theoretical plates for each compound and the average	number of
		theoretical plates for the column.	[3 marks]
	ii.	Calculate the average height of a theoretical plate.	[3 marks]
(b)	State	3 factors that affect Height Equivalent of a Theoretical Plate (H)	[3 marks]
(c) With schematic diagram differentiate between a single beam spectrophotometer and double b			
	spect	rophotometer	[6 marks]