## GARISSA UNIVERSITY

## UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR ONE FIRST SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: PHY 112
COURSE TITLE: MECHANICS 1

## EXAMINATION DURATION: 3 HOURS

## DATE: 07/12/17

## INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

[^0]please turn over

## QUESTION ONE (COMPULSORY)

(a) i) Define the term 'system of units'
ii) State two importance of dimensional analysis
(b) The energy E of a body due to its motion is found to depend on the weight W of the body, speed U with which the body is moving and the acceleration due to gravity g . Use dimensional analysis to find the form of this relationship.
(c) Briefly describe the two types of errors encountered in measurement
(d) Clearly define instantaneous velocity and instantaneous acceleration
(e) A particle undergoes a displacement given by $S=(2 i+3 j+4 k) m$, when acted upon by a force $F=$ $(5 i+6 j-7 k) N$.
i. Find the work done by the force
ii. Determine angle does the force make with the displacement
(f) Differentiate contact and non-contact forces
(g) A box of weight $m g$ is dragged with force $F$ at an angle $\theta$ above the horizontal. Find:
i. The force exerted by the floor on the box.
ii. The acceleration of the box if the coefficient of friction with the floor is $\mu$
(h) Two masses of 0.5 and 0.25 Kg are connected by a light inextensible string, which passes over a smooth pulley. If the system is released from rest with the string taut, find the acceleration of each mass.

## QUESTION TWO

(a) Define the terms angular velocity and centripetal acceleration
(b) A block of 2 g when released on an inclined plane describes a circle of radius 12 cm in the vertical plane on reaching the bottom. Find the minimum height of the incline
(c) A conical pendulum consists of a small massive bob of mass $M$ hung from a string of length $L$ and rotating steadily in a horizontal circle of radius R , the bob is displaced at angle $\theta$. With the help of diagram
i. Indicate all the forces acting on the bob
[2 marks]
ii. Show that its period of oscillation is given by $T=2 \pi \sqrt{\frac{L \operatorname{Cos} \theta}{g}}$
(d) The orbit of an electron in the hydrogen atom may be considered to be a circle of radius $5 \times 10^{-11} \mathrm{M}$, and the period of motion is $1.5 \times 10^{-6} s$. Calculate
i. The angular speed of the electron
ii. The centripetal acceleration

## QUESTION THREE

(a) State the law of conservation of energy
(b) A uniform ladder 10 m long weighing 295 N rests against a smooth vertical wall with its base on a rough floor, and 4 M from the wall. If the coefficient of friction between the ladder and the floor is 0.166 , how far along the ladder will a 70 Kg man climb before the ladder slips from under him?
(c) Clearly distinguish between coplanar forces and concurrent forces
(d) A block of weight W hangs from a cord, which is attached at point O to two other cords, one fastened to the ceiling and the other to the wall. Find the tensions in this three cords(assume the weights of the cords to be negligible

(e) i) state the Newton's law of universal gravitation
ii) state the three Kepler's laws of planetary motion

## QUESTION FOUR

(a) i) state the law of conservation of linear momentum
ii) Differentiate between elastic and inelastic collisions
(b) A particle of mass $m$ with initial velocity $u$ makes an elastic collision with a particle of mass $M$ initially at rest. After the collision the particles have equal and opposite velocities. Find
i. the ratio $M / m$;
ii. The velocity of centre of mass;
(c) Clearly distinguish between conservative and non- conservative forces and give one example of each of the forces.
(d) Show that in case of a conservative force the work done round a closed path is zero

## QUESTION FIVE

(a) i) state the work-energy theorem
(ii)State the three Newton's laws of motion
(b) Two boxes of mass 80 Kg and 110 Kg are in contact and at rest on a horizontal
i. Surface as shown. A 650 N push is exerted on the 80 Kg box in the direction
ii. Shown. If the coefficient of friction is 0.2 calculate

iii. The acceleration of the system
iv. The force each box exerts on the other
(c) Show that $\mathrm{X}=\mathrm{X}_{\mathrm{o}}+\mathrm{V}_{\mathrm{o}} \mathrm{t}+1 / 2 \mathrm{at}^{2}$ Where the symbols used have their usual meaning
(d) Consider a liquid of density $\rho$ flowing through a tube of cross-sectional area $A_{1}$ at speed $V_{1}$ to another narrow tube of cross-sectional area $\mathrm{A}_{2}$ at speed $\mathrm{V}_{2}$. With the aid of diagram derive the equation of continuity

## QUESTION SIX

(a) Define the term "projectile motion"
(b) If a projectile at a point O on the ground is projected with a velocity u at an angle $\alpha$ to the horizontal motion separately, show that.
i. Time taken to reach maximum height is given by

$$
t=\frac{u \sin \alpha}{g}
$$

ii. Total time of flight is given by

$$
t=\frac{2 u \sin \alpha}{g}
$$

iii. Maximum horizontal range is given by

$$
R=\frac{u^{2}}{g}
$$

[3 marks]
(c) Define
i. viscosity
ii. With the aid of a diagram, derive the expression of viscosity

$$
\eta=\frac{2 g R^{2}(\rho-\sigma)}{9 v}
$$


[^0]:    This paper consists of FIVE (5) printed pages

