GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR ONE FIRST SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: PHY 110
COURSE TITLE: BASIC PHYSICS 1

EXAMINATION DURATION: 3 HOURS

DATE: 07/12/17

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

[^0]please turn over

QUESTION ONE (COMPULSORY)

(a) Define the thermal equilibrium
(b) A particle undergoes a displacement given by $\mathrm{S}=(2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}) \mathrm{m}$, when acted
i. Upon by a force $\mathrm{F}=(5 \mathrm{i}+6 \mathrm{j}-7 \mathrm{k}) \mathrm{N}$.
ii. Find the work done by the force
iii. Determine angle does the force make with the displacement
(c) A ball moving with a speed of $9 \mathrm{~m} / \mathrm{s}$ strikes an identical stationary ball such that after collision, the direction of each ball makes an angle 30° with the original line of motion (see Fig. 1). Find the speeds of the two balls after the collision. Is the kinetic energy conserved in the collision process?

(d) i)In Cartesian co-ordinate system, show that $\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=\mathbf{1}$ and $\mathbf{i x i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0}$
ii) Prove that the bob of a simple pendulum may move with simple harmonic motion and find an expression for its period.
(e) A block of weight W hangs from a cord, which is attached at point O to two other cords, one fastened to the ceiling and the other to the wall. Find the tensions in this three cords(assume the weights of the cords to be negligible

(f) Show that the path taken by a projectile is a parabola
(g) Show that the coefficient of volume expansivity is given by three times the coefficient of linear expansion
(h) i) Define the term viscosity
ii) With the aid of a diagram, derive the expression of viscosity

$$
\eta=\frac{2 g R^{2}(\rho-\sigma)}{9 v}
$$

QUESTION TWO

(a) Define the terms tensile stress and tensile strain
(b) An elastic rod 5 m long and $0.03 \mathrm{~m}^{2}$ in a cross section, stitches by 0.15 m when a weight of 270 N is hung on it. Calculate
i. The stress
ii. Young's modulus of the material
(c) A conical pendulum consists of a small massive bob of mass M hung from a string of length L and rotating steadily in a horizontal circle of radius R , the bob is displaced at angle θ. With the help of diagram
i. Indicate all the forces acting on the bob
ii. Show that its period of oscillation is given by $T=2 \pi \sqrt{\frac{L \operatorname{Cos} \theta}{g}}$
(d) A particle of mass m with initial velocity u makes an elastic collision with a particle of mass M initially at rest. After the collision the particles have equal and opposite velocities. Find
(i) The ratio M / m;
(ii) The velocity of centre of mass;

QUESTION THREE

(a) Define the term "projectile motion"
(b) A ball is thrown forward horizontally from the top of a cliff with a velocity of $10 \mathrm{~m} / \mathrm{s}$. The height of the cliff above the ground is 45 m . Calculate
i. The time to reach the ground
ii. The distance from the cliff of the ball on hitting the ground
(c) If a projectile at a point O on the ground is projected with a velocity u at an angle α to the horizontal motion separately show that maximum horizontal range is given by $R=\frac{u^{2}}{g}$
[4 marks]
(d) i) State the Newton's law of universal gravitation
ii) State the three Kepler's laws of planetary motion

QUESTION FOUR

(a) i) state the law of conservation of linear momentum
[2 marks]
ii) Differentiate between elastic and inelastic collisions
[2 marks]
iii) A 5 kg lump of clay that is moving at $10 \mathrm{~m} / \mathrm{s}$ to the left strikes a 6 kg lump of clay moving at $12 \mathrm{~m} / \mathrm{s}$ to the right. The two lumps stick together after they collide. Find the final speed of the composite object and the kinetic energy dissipated in the collision.
(b) A closed metal vessel contains water at $75^{\circ} \mathrm{C}$. the vessel has a surface area of $0.5 \mathrm{~m}^{2}$ and a uniform thickness of 4 mm . if the outside temperature is $15^{\circ} \mathrm{C}$ and the thermal conductivity of the metal is $400 \mathrm{~W} / \mathrm{M} / \mathrm{K}$, calculate the heat lost per minute by the metal
(c) Using the kinetic theory of gases show that the root-mean square speed is given by

$$
v_{r m s}=\sqrt{\frac{3 R T}{M}}
$$

QUESTION FIVE

(a) i) state the work-energy theorem
ii) State the three Newton's laws of motion
(b) A block of mass M_{1} lying on inclined plane at an angle of 30° to the horizontal is pulled up the plane by a mass M_{2}. A light inextensible cord passing over a smooth pulley as shown connects the two mass. Given that μ between M_{1} and the plane is 0.15 and that $\mathrm{M}_{1}=\mathrm{M}_{2}=2 \mathrm{~kg}$.
i. Draw the free body diagrams for the two masses
ii. Determine the acceleration of the masses
iii. Determine the tension in the cord

QUESTION SIX

(a) Given that mercury in glass thermometer has a mercury thread of lengths 2 cm and 10 cm at the ice and steam points respectively, calculate the temperature at a length of 6 cm .
(b) i. Define the term blackbody
ii. What happens to radiant heat when it falls on a body

Ser. No. EDU 064/17
(c) Starting with the first law of thermodynamics and using the $d Q=d U+P d V$ equation of state, $P V=R T$; show that the equation of reversible adiabatic change for ideal gas is given by

$$
P V^{\gamma}=\text { Cons } \tan t
$$

[^0]: This paper consists of SIX (6) printed pages

