

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>TWO</u> <u>FIRST</u> SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: MAT 212

COURSE TITLE: LINEAR ALGEBRA I

EXAMINATION DURATION: 3 HOURS

DATE: 08/12/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of TWO (2) printed pages

please turn over

QUESTION ONE (COMPULSORY)

(a) Define the following terms/phrases as used in the Linear Algebra:

i.	A reduced echelon form matrix	[1 mark]
ii.	An elementary matrix	[1 mark]
iii.	The WROSKIAN of functions f, g, h at a point x_0	[1 mark]
iv.	A basis S of a vector space V	[1 mark]
v.	A linear transformation <i>T</i> .	[1 mark]
vi.	A symmetric matrix. Give an example	[1 mark]

(b) Given the matrix
$$A = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix}$$

Where *a*, *b*, *c* and *d* are non-zero constraints,

- i. Compute AA^t and A^tA . Hence determine A^{-1} , the inverse of A.
- ii. Compute $\det A \times \det A^t$ [7 marks]
- (c) Let $W = \{ [4,5,6], [7,8,8] \}$ be a subset of \mathbb{R}^3
 - i. Show that *W* is linearly independent
 - ii. Describe the span of W
 - iii. Show that the span (*W*) is a subspace of \mathbb{R}^3
- (d) Row reduce to echelon form the augmented matrix

and obtain rank of A and inverse of A where $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 8 \end{pmatrix}$ [6 marks]

[6 marks]

QUESTION TWO

- (a) (i) Let V be a vector space over a field ℝ. When are the vectors v₁, v₂, ... v_m, ∈, V said to be linearly dependent (or independent) over ℝ?
 [2 marks]
 - (ii) Prove that the non-zero vectors $v_1, v_2, ..., v_m$ are linearly dependent if and only if one of them, say v_1 is a linear combination of the preceding vectors:

$$v_i = a_1 v_1 + \dots + a_{i-1} v_{i-1}$$
 [6 marks]

(b) Let *V* be the vector space of a polynomials of degree $\leq 3 \text{over} \mathbb{R}$. Determine whether $u, v, w, \in V$ are independent or dependent where,

 $u = t^3 + 4t^2 - 2t + 3, v = t^3 + 6t^2 - t + 4, w = 3t^3 + 8t^2 - 8t + 7$ [7 marks]

QUESTION THREE

- (a) Suppose $U = \{ sin x, sin 2x, sin 3x \}$ is the set of real valued functions of x.
 - i. Show that $W(\pi/4) = 1$; W(x) is the Wroskianof *U*. Hence or otherwise, prove that *U* is linearly independent. [5 marks]
 - ii. If U, V are linearly independent vectors in a vector space y, then prove that the set $\{U + V, 2U 3V\}$ is linearly independent. [4 marks]
- (b) A linear transformation *T* is defined on the vector space of \mathbb{R}^2 by T[x, y] = [2x, -y].
 - i. give a rule for the inverse transformation T^{-1} [3 marks]ii. Obtain $T^{-1}[2b, -c]$ [1 marks]
 - iii. Show that T^{-1} is linear [2 marks]

QUESTION FOUR

(a) Prove that for any vectors $x, y, z \in \mathbb{R}^n$ and any scalar $\alpha \in \mathbb{R}^n$

$$(x+y)z = xz + yz$$
[3 marks]

(b) Let $V = \mathbb{R}^3$. Show that W is a subspace V where $W = \{(a, b, c): a + b + c = 0\}$ that is W consists of those vectors each with the property that the sum of its components is zero.

(c) Determine the three square elementary matrices corresponding to the operations $R_1 \leftrightarrow R_2, R_3 \leftrightarrow -7R_3$ and $R_2 \leftrightarrow -3R_1 + R_2$ [3 marks]

[4 marks]

- (d) Solve the system of equations: $2x_1 + x_2 2x_3 = 10$
 - $3x_1 + 2x_2 + 2x_3 = 1$ $5x_1 + 4x_2 + 3x_3 = 4$

by reducing the corresponding to an echelon form

QUESTION FIVE

- (a) (i) Define the rank of a matrix [2 marks]
 - (ii) Using (i) above determine the rank of:

$$A = \begin{pmatrix} 3 & 4 & 5 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 [3 marks]

[5 marks]

(b) Use triangular decomposition method to solve the system:

$$x_{1} + 2x_{2} - x_{3} + 3x_{4} = 10$$

$$2x_{1} - x_{2} + 3x_{3} + 2x_{4} = 23$$

$$3x_{1} + 3x_{2} + x_{3} + x_{4} = 5$$

$$4x_{1} + 5x_{2} - 2x_{3} + 2x_{4} = -2$$
[10 marks]

QUESTION SIX

Consider the transformation defined from $P_3(x)$ into $P_3(x)$, the set of polynomials in degree 3 by:

 $T(P_3(x)) = (x-1)P'_3(x) + P_3(x)$

i.	Show that <i>T</i> is linear	[2 marks]
ii.	Obtain M_T , matrix of T	[3 marks]
iii.	Show that T is one $-$ to $-$ one and onto	[3 marks]
iv.	Obtain the kernel of <i>T</i>	[1 mark]
v.	Obtain the range of T	[3 marks]
vi.	Verify that Dim (Ker <i>T</i>) + Dim (range <i>T</i>) = Dim ($P_3(x)$).	[2 marks]
vii.	Obtain T^{-1} the inverse of T	[1 mark]

4

Good Luck – Exams Office