## GARISSA UNIVERSITY

# UNIVERSITY EXAMINATION $2017 / 2018$ ACADEMIC YEAR TWO FIRST SEMESTER EXAMINATION <br> SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES <br> FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS) 

## COURSE CODE: MAT 212

COURSE TITLE: LINEAR ALGEBRA I

## EXAMINATION DURATION: 3 HOURS

## DATE: 08/12/17

TIME: 09.00-12.00 PM

## INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper


## QUESTION ONE (COMPULSORY)

(a) Define the following terms/phrases as used in the Linear Algebra:
i. A reduced echelon form matrix
ii. An elementary matrix
iii. The WROSKIAN of functions $f, g, h \ldots$ at a point $x_{0}$
iv. A basis $S$ of a vector space $V$
v. A linear transformation $T$.
vi. A symmetric matrix. Give an example
(b) Given the matrix $A=\left(\begin{array}{cccc}a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a\end{array}\right)$

Where $a, b, c$ and $d$ are non-zero constraints,
i. Compute $A A^{t}$ and $A^{t} A$. Hence determine $A^{-1}$, the inverse of $A$.
ii. Compute $\operatorname{det} A \times \operatorname{det} A^{t}$
(c) Let $W=\{[4,5,6],[7,8,8]\}$ be a subset of $\mathbb{R}^{3}$
i. Show that $W$ is linearly independent
ii. Describe the span of $W$
iii. Show that the span $(W)$ is a subspace of $\mathbb{R}^{3}$
(d) Row reduce to echelon form the augmented matrix

| 1 | 2 | 3 | $a$ |
| :--- | :--- | :--- | :--- |
| 4 | 5 | 6 | $b$ |
| 7 | 8 | 8 | $c$ |

and obtain rank of $A$ and inverse of $A$ where $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 8\end{array}\right)$

## QUESTION TWO

(a) (i) Let $V$ be a vector space over a field $\mathbb{R}$. When are the vectors $v_{1}, v_{2}, \ldots v_{m}, \in, V$ said to be linearly dependent ( or independent) over $\mathbb{R}$ ?
(ii) Prove that the non-zero vectors $v_{1}, v_{2}, \ldots v_{m}$ are linearly dependent if and only if one of them, say $v_{1}$, is a linear combination of the preceding vectors:

$$
v_{i}=a_{1} v_{1}+\ldots a_{i-1} v_{i-1}
$$

(b) Let $V$ be the vector space of a polynomials of degree $\leq 3$ over $\mathbb{R}$. Determine whether $u, v, w, \in V$ are independent or dependent where,
$u=t^{3}+4 t^{2}-2 t+3, v=t^{3}+6 t^{2}-t+4, w=3 t^{3}+8 t^{2}-8 t+7$
[7 marks]

## QUESTION THREE

(a) Suppose $U=\{\sin x, \sin 2 x, \sin 3 x\}$ is the set of real valued functions of $x$.
i. Show that $W(\pi / 4)=1 ; W(x)$ is the Wroskianof $U$. Hence or otherwise, prove that $U$ is linearly independent.
ii. If $U, V$ are linearly independent vectors in a vector space $y$, then prove that the set $\{U+V, 2 U-3 V\}$ is linearly independent.
(b) A linear transformation $T$ is defined on the vector space of $\mathbb{R}^{2}$ by $T[x, y]=[2 x,-y]$.
i. give a rule for the inverse transformation $T^{-1}$
ii. Obtain $T^{-1}[2 b,-c]$
iii. Show that $T^{-1}$ is linear

## QUESTION FOUR

(a) Prove that for any vectors $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{n}$ and any scalar $\alpha \in \mathbb{R}^{n}$

$$
\begin{equation*}
(x+y) z=x z+y z \tag{3marks}
\end{equation*}
$$

(b) Let $V=\mathbb{R}^{3}$. Show that $W$ is a subspace $V$ where $W=\{(a, b, c): a+b+c=0\}$ that is W consists of those vectors each with the property that the sum of its components is zero.
(c) Determine the three square elementary matrices corresponding to the operations
$R_{2}, R_{3} \leftrightarrow-7 R_{3}$ and $R_{2} \leftrightarrow-3 R_{1}+R_{2}$
(d) Solve the system of equations: $2 x_{1}+x_{2}-2 x_{3}=10$

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+2 x_{3}=1 \\
& 5 x_{1}+4 x_{2}+3 x_{3}=4
\end{aligned}
$$

by reducing the corresponding to an echelon form

## QUESTION FIVE

(a) (i) Define the rank of a matrix
[2 marks]
(ii) Using (i) above determine the rank of:

$$
A=\left(\begin{array}{lll}
3 & 4 & 5 \\
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

[3 marks]
(b) Use triangular decomposition method to solve the system:

$$
\begin{gathered}
x_{1}+2 x_{2}-x_{3}+3 x_{4}=10 \\
2 x_{1}-x_{2}+3 x_{3}+2 x_{4}=23 \\
3 x_{1}+3 x_{2}+x_{3}+x_{4}=5 \\
4 x_{1}+5 x_{2}-2 x_{3}+2 x_{4}=-2
\end{gathered}
$$

## QUESTION SIX

Consider the transformation defined from $P_{3}(x)$ into $P_{3}(x)$, the set of polynomials in degree 3 by:
$T\left(P_{3}(x)\right)=(x-1) P_{3}^{\prime}(x)+P_{3}(x)$
i. Show that $T$ is linear
ii. Obtain $M_{T}$, matrix of $T$
iii. Show that $T$ is one - to - one and onto
iv. Obtain the kernel of $T$
v. Obtain the range of $T$
vi. Verify that $\operatorname{Dim}(\operatorname{Ker} T)+\operatorname{Dim}($ range $T)=\operatorname{Dim}\left(P_{3}(x)\right)$.
vii. Obtain $T^{-1}$ the inverse of $T$

