GARISSA UNIVERSITY

UNIVERSITY EXAMINATION $2017 / 2018$ ACADEMIC YEAR TWO FIRST SEMESTER EXAMINATION
 SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
 FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: PHY 211 / PHY 210
COURSE TITLE: ELECTRICITY AND MAGNETISM
EXAMINATION DURATION: 3 HOURS

DATE: 11/12/17
TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

Use the following constants where necessary:

Speed of light $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$; Charge of an electron $e=1.6 \times 10^{-19} \mathrm{C}$
Permittivity of free space $\varepsilon_{o}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$; Permeability of free space $\mu_{o}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}$
(a) i) State Coulombs law both in words and in mathematical form
ii) Calculate the value of two equal charges if they repel one another with a force of 0.1 N when situated 50 cm apart in vacuum.
iii) A particle having a charge $\mathrm{q}=3 \times 10^{-9} \mathrm{C}$ moves from point a to point b along a straight line a total distance of 0.5 m . The electric field is uniform with magnitude $\mathrm{E}=200 \mathrm{~N} / \mathrm{C}$. Find potential difference between \mathbf{a} and \mathbf{b}.
(b) Give the mathematical statement of the Ampere's law and Biot Savart law
(c) Derive an expression for the total capacitance for two parallel plate capacitors connected in series with no dielectric material between the plates.
(d) i) Define the term potential at any point in the field.
ii) An electron is liberated from the lower of the two large parallel metal plates separated by a distance $\mathrm{h}=20 \mathrm{~mm}$. The upper plate has a potential of 2400 V relative to the lower. Calculate the time the electron takes to reach it (assume charge-mass ratio, e/m for the electron $=1.8 \mathrm{x}$ $10^{11} \mathrm{C} / \mathrm{kg}$)
(e) i) Define the term electric dipole
ii) Starting from Coulomb's law, show that the electric potential a distance r
from a point charge q is given by

$$
V=\frac{q}{4 \pi \varepsilon_{o} r}
$$

(f) i) Define the terms electric current and current density
ii) When we refer to a quantity of charge we say that the value is quantized.

Explain what is meant by quantized.
(g) State the boundary condition for electric field across a dielectric interface

QUESTION TWO

(a) State Gauss' law of electrostatics in mathematical form
(b) Use Gauss' law to show that the electric field magnitude due to an infinite sheet of charge, carrying a surface density σ, is given by $\quad E=\frac{\sigma}{2 \varepsilon_{0}}$
[4 marks]
(c) Show that the electric field outside a charged sphere is $Q / 4 \pi \varepsilon{ }_{o} r^{2}$, where r is the distance from the centre of the ball.
[4 marks]
(d) An electron of mass $m_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$ is accelerated in the uniform electric field \boldsymbol{E} between two parallel charged plates, There is no electric field outside of the plates. The electric field has a magnitude $E=2.0 \times 103 \mathrm{~N} / \mathrm{C}$ and electron charge $e=-1.6 \times 10^{-19} \mathrm{C}$. The separation of the plates is 1.5 cm and the electron is accelerated from rest near the negative plate and passes through a tiny hole in the positive plate.(Assume the hole is so small that it does not affect the uniform field between the plates). Find:
i. The force on the electron while it is between the plates
[2 marks]
ii. Its acceleration and speed when leaving the hole
iii. The force on the electron outside of the plates

QUESTION THREE

(a) i. What is a dielectric material
ii. State two effects of dielectric material
(b) Show that when a dielectric is introduced in a parallel plate capacitor the capacitance is increased by a factor, which is equal to the relative permittivity of the dielectric
(c) Obtain the expression of the electric displacement vector in terms of electric vector and the polarization vector.

QUESTION FOUR

(a) A point charge $q=-8.0 \mathrm{nC}$ is located at the origin. Find the electric-field vector at the field point x $=1.2 \mathrm{~m}, y=-1.6 \mathrm{~m}$.
(b) Two straight, parallel, superconducting wires 4.5 mm apart carry equal currents of $15,000 \mathrm{~A}$ in opposite directions. Find force, per unit length, each wire exert on the other.
(c) i) Define the terms polarization and Electric displacement vector
ii. A 12 V battery is connected to a 5 ohms resistor. The current in the circuit is found to be 2 A .

Calculate the internal resistance of the battery and power dissipated in the Resistor
(d) A capacitor of capacitance $C=500 \mu \mathrm{~F}$ is charged to a voltage of 900 V and is then discharged through a resistance $R=200 \mathrm{k} \Omega$ when a switch is closed.
i. Find the initial charge stored in the capacitor.
ii. Find the time constant of this capacitor resistor network combination

QUESTION FIVE

(a) State two differences between electric field and magnetic field
(b) Using the Maxwell's Law $\nabla \times \mathbf{B}=\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$ derive expression for the electric and magnetic field
(c) i) State the Kirchhoff's current law and Kirchhoff's voltage law.

ii) Consider the circuit above. Calculate the current $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} in the circuit of figure

QUESTION SIX

(a) Use Ampere's law to calculate the magnetic field for a long cylindrical conductor of radius R and a current I flowing through it at a distance r from the central axis of the conductor when (a) $r>R$ and (b) $r<R$
[4 marks]
(b) A 2 m long wire weighs 4 g and carries a 10 A current. It is constrained to move only vertically above another wire carrying 15 A in the opposite direction. At what separation would its weight be supported by magnetic force
[3 marks]
(c) Two point charges q_{1} and $\mathrm{q}_{2},+12 \times 10^{-9} \mathrm{C}$ and $-12 \times 10^{-9} \mathrm{C}$ are placed 0.1 m apart as shown in the diagram. Calculate the electric fields due to these charges at points a, b and c
[4 marks]

ii) using Gauss's law derive the expression of electric field for long wire of length L having charge per unit length λ. considering the wire as a cylindrical Gaussian surface of radius r.
[4 marks]

