

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>TWO</u> <u>FIRST</u> SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: PHY 211 / PHY 210

COURSE TITLE: ELECTRICITY AND MAGNETISM

EXAMINATION DURATION: 3 HOURS

DATE: 11/12/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of FIVE (5) printed pages

SEM 1, 17/18 main exam (01/12-14/12/17)

please turn over

1

QUESTION ONE (COMPULSORY)

Use the following constants where necessary:

Speed of light $c = 3.0 \times 10^8 m / s$; Charge of an electron $e = 1.6 \times 10^{-19} C$

Permittivity of free space $\varepsilon_a = 8.854 \times 10^{-12} F / m$; Permeability of free space $\mu_a = 4\pi \times 10^{-7} T . m / A$

(a) i) State Coulombs law both in words and in mathematical form [2 marks] ii) Calculate the value of two equal charges if they repel one another with a force of 0.1 N when situated 50 cm apart in vacuum. [2 marks] iii) A particle having a charge $q = 3x10^{-9}$ C moves from point a to point b along a straight line a total distance of 0.5m. The electric field is uniform with magnitude E=200N/C. Find potential difference between **a** and **b**. [2 marks] (b) Give the mathematical statement of the Ampere's law and Biot Savart law [2 marks] (c) Derive an expression for the total capacitance for two parallel plate capacitors connected in series with no dielectric material between the plates. [3 marks] (d) i) Define the term potential at any point in the field. [1 mark] ii) An electron is liberated from the lower of the two large parallel metal plates separated by a distance h=20mm. The upper plate has a potential of 2400V relative to the lower. Calculate the time the electron takes to reach it (assume charge-mass ratio, e/m for the electron = 1.8 x 10^{11} C/kg) [3 marks] (e) i) Define the term electric dipole [1 mark] ii) Starting from Coulomb's law, show that the electric potential a distance r $V = \frac{q}{4\pi\varepsilon_{o}r}$ from a point charge q is given by [3 marks] (f) i) Define the terms electric current and current density [2 marks] ii)When we refer to a quantity of charge we say that the value is quantized. Explain what is meant by quantized. [2 marks] (g) State the boundary condition for electric field across a dielectric interface [2 marks]

QUESTION TWO

- (a) State Gauss' law of electrostatics in mathematical form
- (b) Use Gauss' law to show that the electric field magnitude due to an infinite sheet of charge,

carrying a surface density
$$\sigma$$
, is given by $E = \frac{\sigma}{2\varepsilon_0}$ [4 marks]

- (c) Show that the electric field outside a charged sphere is $Q / 4\pi \varepsilon_o r^2$, where *r* is the distance from the centre of the ball. [4 marks]
- (d) An electron of mass $m_e = 9.1 \times 10^{-31}$ kg is accelerated in the uniform electric field E between two parallel charged plates, There is no electric field outside of the plates. The electric field has a magnitude $E = 2.0 \times 103$ N/C and electron charge $e = -1.6 \times 10^{-19}$ C. The separation of the plates is 1.5 cm and the electron is accelerated from rest near the negative plate and passes through a tiny hole in the positive plate.(Assume the hole is so small that it does not affect the uniform field between the plates). Find:

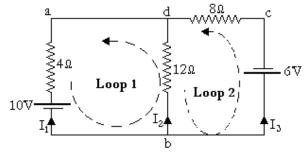
i.	The force on the electron while it is between the plates	[2 marks]
ii.	Its acceleration and speed when leaving the hole	[2 marks]
iii.	The force on the electron outside of the plates	[2 marks]

QUESTION THREE

(a) i. What is a dielectric material	[1 mark]	
ii. State two effects of dielectric material	[2 marks]	
(b) Show that when a dielectric is introduced in a parallel plate capacitor the capacitance is increased		
by a factor, which is equal to the relative permittivity of the dielectric	[6 marks]	
(c) Obtain the expression of the electric displacement vector in terms of electric vector and the		
polarization vector.	[6 marks]	

QUESTION FOUR

- (a) A point charge q = -8.0 nC is located at the origin. Find the electric-field vector at the field point x = 1.2 m, y = -1.6 m. [3 marks]
- (b) Two straight, parallel, superconducting wires 4.5 mm apart carry equal currents of 15,000 A in opposite directions. Find force, per unit length, each wire exert on the other. [3 marks]



[1 mark]

- (c) i) Define the terms polarization and Electric displacement vector[2 marks]ii. A 12V battery is connected to a 5 ohms resistor. The current in the circuit is found to be 2A.
Calculate the internal resistance of the battery and power dissipated in the Resistor[3 marks](d) A capacitor of capacitance $C = 500 \ \mu$ F is charged to a voltage of 900 V and is then discharged
through a resistance $R = 200 \ k \ \Omega$ when a switch is closed.[2 marks]
 - ii. Find the time constant of this capacitor resistor network combination [2 marks]

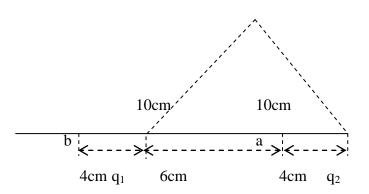
QUESTION FIVE

- (a) State two differences between electric field and magnetic field [2 marks]
- (b) Using the Maxwell's Law $\nabla \times \mathbf{B} = \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$ derive expression for the electric and magnetic field
- (c) i) State the Kirchhoff's current law and Kirchhoff's voltage law.

ii) Consider the circuit above. Calculate the current I_1 , I_2 and I_3 in the circuit of figure

QUESTION SIX

- (a) Use Ampere's law to calculate the magnetic field for a long cylindrical conductor of radius R and a current I flowing through it at a distance r from the central axis of the conductor when (a) r > R and (b) r < R [4 marks]
- (b) A 2 m long wire weighs 4 g and carries a 10 A current. It is constrained to move only vertically above another wire carrying 15 A in the opposite direction. At what separation would its weight be supported by magnetic force [3 marks]



[5 marks]

[2 marks]

[6 marks]

(c) Two point charges q_1 and q_2 , $+12x10^{-9}$ C and $-12x10^{-9}$ C are placed 0.1m apart as shown in the diagram. Calculate the electric fields due to these charges at points a, b and c

ii) using Gauss's law derive the expression of electric field for long wire of length L having charge per unit length λ . considering the wire as a cylindrical Gaussian surface of radius r.

[4 marks]

[4 marks]