

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>ONE</u> <u>FIRST</u> SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: MAT 104

COURSE TITLE: BASIC MATHEMATICS AND ANALYTIC GEOMETRY

EXAMINATION DURATION: 3 HOURS

DATE: 11/12/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of THREE (3) printed pages

please turn over

QUESTION ONE (COMPULSORY)

(a) State whether we can find a circle that passes through the points A(1, 2), B(2, 4) and C(5, 6).

- (b) Solve for x between 0° and 360° in the equation 2sinx = cos(x + 60°) [5 Marks]
- (c) Find the roots of the equation $4x^4 19x^3 + 24x^2 + x 10 = 0.$ [5 Marks]
- (d) (i)Find the eccentricity of the hyperbola $12x^2 27y^2 = 108$. [2 Marks] (ii) Replace the following polar equation by its equivalent Cartesian equation and identify its graph: $r^2 = 4r\cos\theta$. [3 Marks]
- (e) (i)In how many ways can the letters of the word "ASSASSINATION" be arranged

[2 Marks]

[5 Marks]

(ii) If
$$C(n, x) = 56$$
 and $P(n, x) = 336$ find *n* and *x*. [3 Marks]

QUESTION TWO

- (a) Analyze the graph of the equation $9x^2 16y^2 144 = 0$. [5 Marks]
- (b) Prove that the standard form of an equation of an ellipse, with centre (h, k) and major and minor axes of lengths 2a and 2b respectively, where a > b is given by $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1.$ [10 marks]

QUESTION THREE

- (a) (i) State without proof, the remainder theorem [1 Mark] (ii) Show that $\frac{3}{2}$ is a zero of $f(x) = 2x^3 - 5x^2 + x + 3$ and write $2x^3 - 5x^2 + x + 3$ in factored form. [3 Marks]
- (b) (i) 4 men and 3 women are to be seated for a dinner such that no 2 women sit together and no 2 men sit together. Find the number of ways in which this can be arranged

[3 Marks]

(ii) Verify that
$$\binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 2^4 - 1.$$
 [3 Marks]

(c) Show that the distance of a point $P(x_1, y_1)$ to a line ax + by + c = 0 in a Cartesian plane is given by:

$$\mathbf{r} = \left| \frac{\mathbf{a}x_1 + \mathbf{b}y_1 + \mathbf{c}}{\sqrt{a^2 + b^2}} \right|.$$
 [5 Marks]

QUESTION FOUR

(a) Prove the Binomial Theorem $(a + b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$. [6 Marks]

(b) Show that
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$$
. [2 Marks]

(c) Find a complete graph of $r = \frac{6}{4-3cos\theta}$. Specify a directrix and a range for θ that produces a complete graph. Find the standard form for the equation of the conic. [7 Marks]

QUESTION FIVE

- (a) Solve the following equations using the method indicated in brackets: (i) $Cos6\theta + Cos4\theta + Cos2\theta = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$ [Factor Formula]. [4 Marks]
 - (ii) $4Cos\theta 6Sin\theta = 5 \text{ for } 0^\circ \le \theta \le 360^\circ$ [Rewrite in the form $Cos(\theta + \alpha) = C$]. [4 Marks]
- (b) Prove that $\frac{tanx+secx}{secx(1+\frac{tanx}{secx})} = 1$ by first rewriting each of the term in form of *sinx*, *cosx* or both. [3 Marks]
- (c) Verify that the point (3, 2) lies on the circle $x^2 + y^2 8x + 2y + 7 = 0$ and find the equation of the tangent at this point. [4 Marks]

QUESTION SIX

- (a) Prove that $Cosh\theta Cosh\phi Sinh\theta Sinh\phi = Cosh(\theta \phi)$. [3 Marks]
- (b) If $5e^x 2e^{-x} \equiv ASinhx + BCoshx$ find the values of A and B . [4 Marks]
- (c) Solve the equation 3Coshx + 2Sinhx = 14.31 correct to 4d.p. [4 Marks]
- (d) Obtain the first four terms of the expansion of $(1 16x)^{1/4}$. Substitute $x = \frac{1}{10000}$ and use the first two terms to find $\sqrt[4]{39}$. How many significant figures is your answer accurate? [4 Marks]