GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR ONE FIRST SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: MAT 104
COURSE TITLE: BASIC MATHEMATICS AND ANALYTIC GEOMETRY

EXAMINATION DURATION: 3 HOURS

DATE: 11/12/17

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) State whether we can find a circle that passes through the points $A(1,2), B(2,4)$ and $C(5,6)$.
(b) Solve for x between 0^{0} and 360° in the equation $2 \sin x=\cos \left(x+60^{\circ}\right)$
(c) Find the roots of the equation $4 x^{4}-19 x^{3}+24 x^{2}+x-10=0$.
(d) (i)Find the eccentricity of the hyperbola $12 x^{2}-27 y^{2}=108$.
(ii) Replace the following polar equation by its equivalent Cartesian equation and identify its graph: $r^{2}=4 r \cos \theta$.
(e) (i)In how many ways can the letters of the word "ASSASSINATION" be arranged
(ii)If $C(n, x)=56$ and $P(n, x)=336$ find n and x.
[3 Marks]

QUESTION TWO

(a) Analyze the graph of the equation $9 x^{2}-16 y^{2}-144=0$.
[5 Marks]
(b) Prove that the standard form of an equation of an ellipse, with centre (h, k) and major and minor axes of lengths $2 a$ and $2 b$ respectively, where $a>b$ is given by $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$.

QUESTION THREE

(a) (i) State without proof, the remainder theorem
(ii) Show that $\frac{3}{2}$ is a zero of $f(x)=2 x^{3}-5 x^{2}+x+3$ and write $2 x^{3}-5 x^{2}+x+3$ in factored form.
[3 Marks]
(b) (i) 4 men and 3 women are to be seated for a dinner such that no 2 women sit together and no 2 men sit together. Find the number of ways in which this can be arranged
[3 Marks]
(ii) Verify that $\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}=2^{4}-1$.
[3 Marks]
(c) Show that the distance of a point $\mathrm{P}\left(x_{1}, y_{1}\right)$ to a line $a x+b y+c=0$ in a Cartesian plane is given by:

$$
\mathrm{r}=\left|\frac{\mathrm{a} x_{1}+\mathrm{b} y_{1}+\mathrm{c}}{\sqrt{a^{2}+b^{2}}}\right| .
$$

[5 Marks]

QUESTION FOUR

(a) Prove the Binomial Theorem $(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$.
(b) Show that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}$.
(c) Find a complete graph of $r=\frac{6}{4-3 \cos \theta}$.Specify a directrix and a range for θ that produces a complete graph. Find the standard form for the equation of the conic.

QUESTION FIVE

(a) Solve the following equations using the method indicated in brackets:
(i) $\operatorname{Cos} 6 \theta+\operatorname{Cos} 4 \theta+\operatorname{Cos} 2 \theta=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$ [Factor Formula].
[4 Marks]
(ii) $4 \operatorname{Cos} \theta-6 \operatorname{Sin} \theta=5$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
[Rewrite in the form $\operatorname{Cos}(\theta+\alpha)=C$].
[4 Marks]
(b) Prove that $\frac{\tan x+\sec x}{\sec x\left(1+\frac{\tan x}{\sec x}\right)}=1$ by first rewriting each of the term in form of $\sin x, \cos x$ or both.
(c) Verify that the point $(3,2)$ lies on the circle $x^{2}+y^{2}-8 x+2 y+7=0$ and find the equation of the tangent at this point.

QUESTION SIX

(a) Prove that $\operatorname{Cosh} \theta \operatorname{Cosh} \phi-\operatorname{Sinh} \theta \operatorname{Sinh} \phi=\operatorname{Cosh}(\theta-\phi)$.
(b) If $5 e^{x}-2 e^{-x} \equiv A \operatorname{Sinh} x+B \operatorname{Cosh} x$ find the values of A and B.
(c) Solve the equation $3 \operatorname{Cosh} x+2 \operatorname{Sinh} x=14.31$ correct to 4 d.p.
[4 Marks]
(d) Obtain the first four terms of the expansion of $(1-16 x)^{1 / 4}$.Substitute $x=\frac{1}{10000}$ and use the first two terms to find $\sqrt[4]{39}$. How many significant figures is your answer accurate?
[4 Marks]

