

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>TWO</u> <u>FIRST</u> SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: CHE 210

COURSE TITLE: ATOMIC STRUCTURE AND BONDING

EXAMINATION DURATION: 3 HOURS

DATE: 13/12/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of FOUR (4) printed pages

please turn over

QUESTION ONE (COMPULSORY)

- (a) What are the main postulates of Valence Shell Electron Pair Repulsion theory [8 marks]
- (b) Write the SPDF Shorthand formation electronic configuration of the following elements/atoms/ions

Cr=24,Fe=26,Cl=17,Ar=18,Mg=12,Ba=56 [6 marks]

- i. Cr
- ii. Fe
- iii. Cl⁻
- iv. Ar
- v. Mg²⁺
- vi. Ba

(c) State the main postulates of Dalton atomic theory	[3 marks]
(d) What is meant by hybridisation of atomic orbitals? Describe the shapes of Sp, S	p ² , Sp ³ hybrid
orbitals.	[6 marks]
(e) Define Hydrogen bond, compare Hydrogen bond with van der Waals forces	[2 marks]

QUESTION TWO

(a)	What do you understand by bond pairs and lone pairs of electrons? Illustrate by giving one	
	example of each type.	[3 marks]
(b)	State the Valence bond theory and molecular orbital theory	[3 marks]
(c)	What is meant by the term first ionization energy of an atom	[2 marks]
(d)	d) Describe the trend of the following properties across a period and down a group in the periodic	
	table of elements(4 marks)	
(e)	Effective nuclear charge (Z*)	
(f)	Ionization Energy	
(g)	State what each of the following rules that govern electron configurations states	
	i Aufhau Principle	[1 mark]

1.	Aufbau Principle	[1 mark]
ii.	Pauli Exclusion Principle	[1 mark]
iii.	Hund's Rule	[1 mark]

Ser. No. EDU 071/17 **QUESTION THREE**

(a) What are the postulates of Bohr atomic Theory? state the difference between his t	theory and
Quantum Mechanical Atomic model theory	[4 marks]
(b) Using orbital Box Notation write the electron configuration of the following species	
(0=8, Br=35, Zn=30, Cs=55, Hg=80, Xe=54, Pb=82	[7 marks]
i. O^{2-}	
ii. Br	
iii. Zn^{2+}	
iv. Cs^+	
v. Hg^{2+}	
vi. Xe	
vii. Pb	
(c) Why are anions always larger than the corresponding atoms?	[2 marks]
(d) Why are cations always smaller than the corresponding atoms?	[2 marks]
QUESTION FOUR	

- (a) A sample of iron from a meteorite was found to contain the isotopes ⁵⁴Fe, ⁵⁶Fe and ⁵⁷Fe.The relative abundances of the isotopes in this sample of iron were found to be 5.8 %, 91.6 %, 2.6 %. Calculate the relative atomic mass of iron in this sample [3 marks] [8 marks]
- (b) Draw the Lewis structures for the following molecules and ions :
 - i. H_2S ,
 - ii. SiCl₄,
 - iii. BeF₂,
 - CO_3^{2-} iv.

(c) What is resonance structure and illustrate with an example

[4 marks]

[7 marks]

QUESTION FIVE

(a) Define lattice energy, ionization energy, and electron affinity. State Hess's law states [5 marks]

(b) Calculate the lattice energy of MgCl₂(s)using the following given values

 $\Delta H_{at}Mg = +147.7 \text{ kJ mol}^{-1}$ $\Delta H_{at}Cl = +121.7 \text{ kJ mol}^{-1}$ $\Delta H_{IE} 1 Mg = +738 \text{ kJ mol}^{-1}$ $\Delta H_{IE} 2 Mg = +1451 \text{ kJ mol}^{-1}$ $\Delta H_{Ea}1~Cl = -348.8~kJ~mol^{-1}$ $\Delta_{\rm Hf}$ MgCl₂= -641.3 kJ mol⁻¹

(c) Explain the trends of Lattice energy enthalpies according to the following factors

i.	The size of the ions	[1.5 marks]
ii.	The charge on the ion	[1.5 marks]

QUESTION SIX

(a)) State three main fajan rules of Polarizability in predicting whether a chemical bond is expected to	
	be predominantly ionic or covalent	[3 marks]
(b)	Why is the second ionization energy of sodium much greater than the first	[2 marks]
(c)	c) Use VSEPR theory to predict the shape of the following molecules. (Central atom listed first).	
	Give the name of the molecular shape	
	i. SO4 ²⁻ ion	[5 marks]

ii. BrF5 [5 marks]