

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>ONE</u> <u>FIRST</u> SEMESTER EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: COM 113

COURSE TITLE: MATHEMATICS FOR COMPUTER SCIENCE I

EXAMINATION DURATION: 3 HOURS

DATE: 13/12/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room

1

Do not write on this paper

This paper consists of THREE (3) printed pages

please turn over

QUESTION ONE (COMPULSORY)

(a) i)Distinguish the following sets: \emptyset , {0} and { \emptyset }	[1 Mark]		
ii) Let $U = \{1, 2, 3,, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$ and $C = \{3, 4, 5, 6\}$. Find:			
i. A^{C}			
ii. $(A \cap C)^C$			
iii. B\C	[4 Marks]		
(b) i)What is a <i>proposition?</i> Give an example.	[2 Marks]		
ii) Using a truth table, show that $\neg(A \lor B) \rightarrow \neg A$ is a tautology	[3 Marks]		
(c) Show that $2.4^n + 1$ is divisible by 3	[5 Marks]		
(d) Given two functions $f(x) = 5x - 3$ and $g(x) = (2x + 3)/(3x - 5)$			
i) Show that $(f_{\circ}g)(x) \neq (g_{\circ}f)(x)$	[4 Marks]		
ii) Find $(f_{\circ}g)^{-1}(x)$ and hence $(f_{\circ}g)^{-1}(2)$	[3 Marks]		
(e) A mixed hockey team containing 5 men and 6 women is to be chosen from 7men and 9			
women. In how many ways can this be done	[3 Marks]		

QUESTION TWO

(a) For each of the following, draw a Venn diagram and shade the region corresponding to the indicated set.

i. $A - (B \cap C)$	ii) $(A - B) \cup (A - C)$	[4 Marks]
(b) Prove analytically that	$A - (B \cap C) = (A - B) \cup (A - C)$ for all sets A,B and C	[5 Marks]
(c) Let $A = \{1, 2, 3, \}, B = \{2, 3, \}, B = \{2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	2,4, } and $C = \{3,4,5\}$.Find $A \times B \times C(3Marks)$.	

(d) Find the number of partitions of $X = \{a, b, c, d\}$ [3 Marks]

QUESTION THREE

((a) i) Define <i>recursion</i> as used in structures	[1 Mark]	
	ii) Give a recursive definition of α^n , where α is a nonzero real number and n is a nonnegati		
	integer	[3 Marks]	
(b) Give the definition of Fibonacci			
	numbers, $f_{0,}f_{1,}$ and use your definition to find f_2 , f_3 , f_4 , f_5 and f_6	[4 Marks]	

(c) A playoff between two teams consists of at most five games. The first team that wins three games wins the playoffs. In how many different ways can the playoff occur?[Hint: use a tree diagram].
[7 Marks]

QUESTION FOUR

(a) i) Prove that if *n* and *r* are integers with $0 \le r \le n$, then $P(n, r) = \frac{n!}{(n-r)!}$ [3 Marks]

ii)How many ways are there to select a first prize winner, a second prize winner and a third prize winner from 100 different people who have entered a contest [3 Marks]

- (b) i) Use the Binomial theorem to expand $(x + y)^4$ [3 Marks]
 - ii) Obtain the coefficient of $x^{12}y^{13}$ in the expansion $(2x 3y)^{25}$ [2 Marks]
- (c) Let f_n denote the nth Fibonacci number. Prove by mathematical induction that $f_n < 2^n$

[4 Marks]

QUESTION FIVE

- (a) i)Define an equivalence relation[1 Mark]ii) Let $A = \mathbb{R}$, the set of real numbers and define a relation R on A by xRy if and only if $x^2 = y^2$. Is this equation an equivalence relation?[3 Marks](a) Let $A = \mathbb{R}$, the set of real numbers and define a relation R on A by xRy if and only if $x^2 = y^2$. Is this equation an equivalence relation?[3 Marks]
- (b) Let $A = B = \{1,2,3,4,5,6\}$ and $R = \{(a,b): a \text{ divides } b\}$ is aRb if and only if a divides b. Obtain the binary matrix representation of R on A [5 Marks]

(c) Three functions f, g and h are defined by $f: \mathbb{Z}^+ \to \mathbb{R}$, $f(x) = \frac{2}{x+1}$, $g: \mathbb{Z} \to \mathbb{Z}$, $g(x) = x^2 + 3$ and $h: \mathbb{R} \to \mathbb{R}$, h(x) = 3x + 2. Determine which of the following composition functions are defined:

(i) $(g_{\circ}f)$ (ii) $(f_{\circ}g)$ (iii) $(h_{\circ}f)$ (iv) $(f_{\circ}h)$ (v) $(f_{\circ}g)$ (vi) $(h_{\circ}g)$ [6 Marks]

QUESTION SIX

(a) Prove that $(\bar{p} \land q) \lor (\overline{p \lor q}) \equiv \bar{p}$ using Boolean algebra. [4 Marks]

- (b) Show that the following two positions are logically equivalent using a truth table:
 - i. If it rains tomorrow then, if I get paid, I'll go to Paris.
 - ii. If it rains tomorrow and I get paid then I'll go to Paris. [11 Marks]