

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR ONE SECOND SEMESTER EXAMINATION

SCHOOL OF COMPUTER AND INFORMATION SCUENCE FOR THE DIPLOMA INFORMATION TECHNOLOGY

COURSE CODE: DIT 028

COURSE TITLE: DIGITAL ELECTRONICS

EXAMINATION DURATION: 3 HOURS

DATE: 10/04/18 TIME: 2.00-5.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of FOUR (4) printed pages

please turn over

QUESTION ONE (COMPULSORY)

(a) Differentiate between intrinsic and extrinsic semiconductors. [4 marks]

(b) Define the following terms:

[3 marks]

- i. Conductor
- ii. Insulator
- iii. Semiconductor

(c) State six characteristics of semiconductors [6 marks]

(d) Describe briefly how you can obtain a P-N junction using a well-illustrated diagram. [5 marks]

(e) Define doping [2 marks]

(f) Sketch the p-n junction diode symbols for both forward and reverse bias. [5 marks]

QUESTION TWO

(a) What do you understand by the term?

i. 'Quiescent point'

ii. Logic gate [3 marks]

(b) State the four transistor biasing methods. [4 marks]

(c) Compute the two's complement of the following binary numbers.

i. 10010110 [4 marks]

ii. 10001001 [4 marks]

QUESTION THREE

(a) Work out as indicated in brackets.

i. (1001.0101)₂ (Binary –to- decimal conversion) [3 marks]

ii. (1E0.2A)₁₆ (Hexadecimal – to – decimal conversion [4 marks]

(b) State any two (2) advantages of digital systems. [2 marks]

(c) Convert the following binary number to its decimal equivalent. [3 marks]

(1001.0101)

(d) Express the following binary number into their 2's complement.

10010110

[3 marks]

QUESTION FOUR

(a) Define the term transistor.

[2 marks]

(b) A common emitter transistor has a reverse leakage current, $I_{CBO} = 48$ Na and a gain $\alpha = 0.992$.

 $_{i.}$ Find β and I_{CEO}

[4 marks]

ii. Find its exact collector current when $I_B = 30 \mu A$.

[4 marks]

iii. Find the approximate collector current neglecting leakage current.

[2 marks]

(c) State the three types of transistor static characteristics.

[3 marks]

QUESTION FIVE

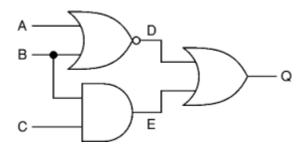
(a) Convert the following binary number to their hexadecimal equivalents.

[3 marks]

i. 1001.1111

(b) Perform the following binary operations

[6 marks]


i. 00010011 + 001111110

ii. 00110011 - 00010110

iii. 00101001 x 00000110

(c) Provide logical expressions **D**, **E** & **Q** for the arrangement below

[6 marks]

QUESTION SIX

a. Complete the truth tables below for the basic operators indicated.

3

[6 marks]

AND

A	В	R
0	0	

SEM 11, 17/18 main exam (06/04-19/04/18)

Good Luck – Exams Office

Ser. No. IT 085/18

0	1	
1	0	
1	1	

OR +

A	В	R
0	0	
	1	1
1	0	
1		1

NOT '

A	R
	1
1	

b. simplify the following Boolean expression using DeMorgans' theorem

[5 marks]

$$\overline{A + \overline{BC}}$$

c. Represent the simplified expression in a circuit diagram.

[4 marks]

