

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR **TWO SECOND** SEMESTER EXAMINATION

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCE

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: PHY 213

COURSE TITLE: ELECTRONICS 1

EXAMINATION DURATION: 3 HOURS

DATE: 17/04/18 TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of SEVEN (7) printed pages

please turn over

QUESTION ONE (COMPULSORY)

a) Explain the difference between a metal and an insulator.

[2 marks]

b) i. Define the terms

[2 marks]

- -Doping
- -Hole
- ii. Explain how temperature affects the electrical conductivity of intrinsic

Semiconductors

[2 marks]

c). Given that current gain $\beta=\frac{I_C}{I_B}$ and $\alpha=\frac{I_C}{I_E}$ show that $I_E=(\beta+1)I_B$ and

 $\alpha = \frac{\beta}{(\beta+1)}$ [4 marks]

ii. An intrinsic semiconductor current (I) flow is due to electrons and holes

$$I = I_e + I_h = enV_eA + e\rho V_hA$$

Where e = electron charge

n= no of electrons per unit

volume of conductor

v_e= electron drift velocity

v_h=hole drift velocity

 ρ =hole density

Show that resistivity,
$$\rho = \frac{1}{en(\mu_0 + \mu_0)}$$

[3 marks]

- iii. Mobilities of electrons and holes in a sample of intrinsic germanium at room temperature are $0.36\text{m}^2/\text{v}$ -s and $0.17\text{m}^2/\text{v}$ -s respectively. If the electron and hole densities are each equal to $2.5 \times 10^{-19} \,\text{m}^3$, Calculate germanium conductivity. [3 marks]
- d). Briefly explain the behavior of PN junction in forward and reverse bias mode. [3 marks]
- e). The base of PNP bipolar transistor is grounded. A battery is connected between the emitter and the base. Another battery is connected between the base and the collector. This is known as the base configuration.

Ser. No. EDU 135/18

- i. Draw the circuit indicating polarities of the batteries that would put the transistor in the forward active mode. Explain why you have chosen these polarities [4 marks]
- ii. Why is the emitter more heavily doped? [2 marks]

QUESTION TWO

a). State and explain two uses of photo resistors

[2 marks]

b). i. In a zener diode circuit below state giving reasons if the zener diode is properly biased hence the diode current assuming it to be an ideal one

[5 marks]

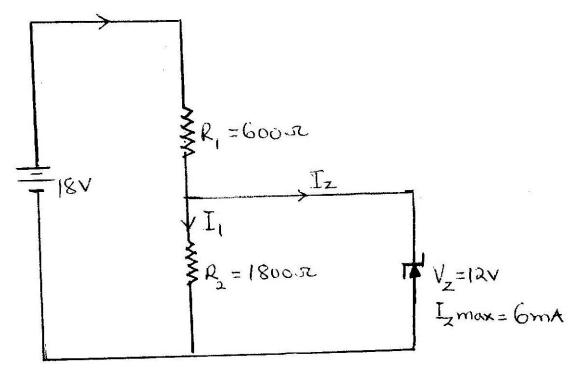


Fig. 1

ii. Draw the symbol for a photodiode and state its uses.

[3 marks]

c). i. Define fabrication.

[1 mark]

ii. Discuss the processes of fabrication of a BJT transistor.

[4 marks]

QUESTION THREE

- (a) Explain the difference between field effect transistor and bipolar junction transistor [3 marks]
- (b) The circuit below represents abias connection. Use the circuit to answer questions that follow.

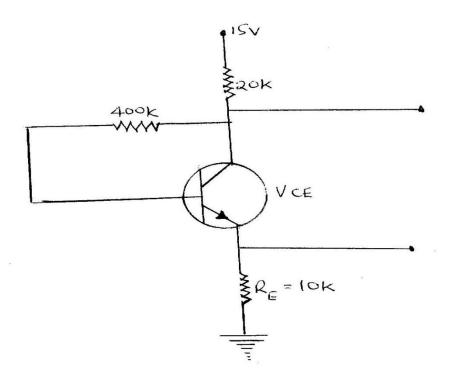


Fig.2

Find

		i).	$I_{C(sat)}$	[2 marks]
		ii).	V_{CE}	[3 marks]
		iii).	K_{β} neglect V_{BE} and take $\beta {=} 100$	[2 marks]
c).	i.	Define Quiescent point [1 mark		[1 mark]
	ii.	For the circuit below draw the d.c load line and locate its Quiescent or dc working point.		

[4 marks]

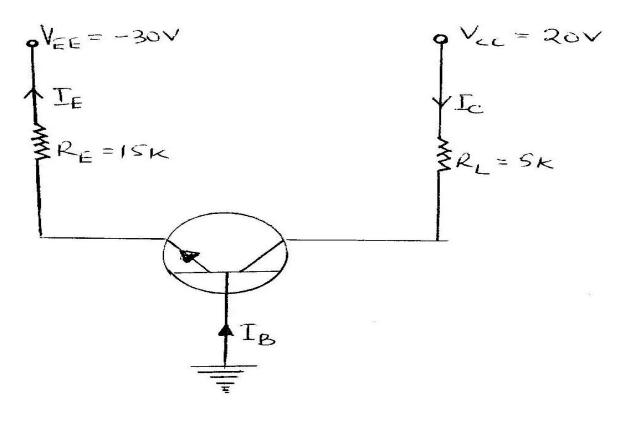


Fig. 3

QUESTION FOUR

- a). state and describe any two optoelectronic devices that are made from semiconductors p-n junction. [5 marks]
- b). i. State the use of Thevenin's theorem in a circuit. [1 mark]
 - ii. Apply Thevenin's theorem to find equivalent resistance (R_{th}), current through the 3Ω resistor and Thevenin's voltage (Vth) [6 marks]

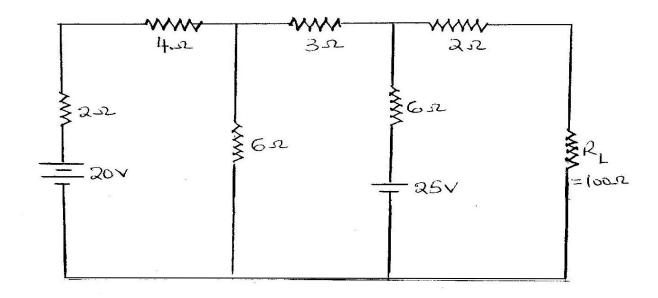
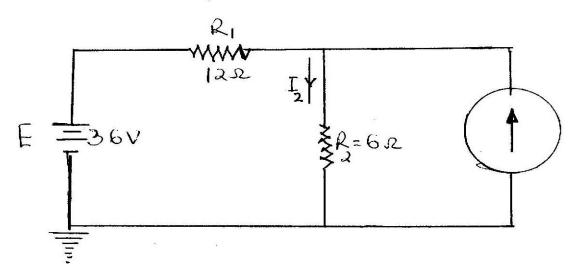


Fig. 4

iii. State the condition and disadvantages of Mesh analysis.

[3 marks]


QUESTION FIVE

- (a) Briefly describe the operations of a thyristor. [3 marks]
- (b) Name two applications of silicon controlled rectifiers (SRC) and function of DIACS [3 marks]
- (c) A given silicon UJT has an inter base resistance of 10K, $R_B = 6K$ with $I_E = 0$. Find
 - i. UJT current if $V_{BB} = 20V$ and V_E is less than V_P [2 marks]
 - ii. Peak point voltages, V_P [2 marks]
- (d). i. Enumerate steps for drawing ac equivalent circuits [3 marks]
 - ii. State Norton's theorem as applied in circuit analysis. [2 marks]

QUESTION SIX

(a) i. Superposition theorem has widespread applications in electricity and electronics. State two uses of this theorem. [2 marks]

ii. Using Superposition theorem determine the current through resistor R_2 for the network in fig5 below. [4 marks]

- i. Fig .5
- ii. In the above circuit demonstrate that the Superposition theorem is not
- iii. Applicable to power levels

[2 marks]

(b) Describe fully the bridge full wave rectifier circuit.

- [4 marks]
- (c) Small signal amplifiers also referred to as voltage amplifiers have three main properties. State and define these properties. [3 marks]