GARISSA UNIVERSITY

UNIVERSITY EXAMINATION $2017 / 2018$ ACADEMIC YEAR TWO SECOND SEMESTER EXAMINATION

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES
FOR THE DEGREE OF BACHELOR OF EDUCATION

COURSE CODE: STA 211
COURSE TITLE: PROBABILITY AND STATISTICS II

EXAMINATION DURATION: 3 HOURS

DATE: 18/04/18
TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) A continuous random variable, X, has probability density function, $f(x)$, given by
$f(x)=\left\{\begin{array}{lc}k x & 0 \leq x \leq 10 \\ 0 & \text { otherwise }\end{array}\right.$. Find
i. The value of k
ii. $\quad P(X>6)$
iii. \quad Calculate the exact value of $E(X)$ and $\operatorname{Var}(X)$
(b) A bag contains a large number of ksh 5 coins and ksh 10 coins in the ratio 1:3.
i. Find the mean, μ, and the variance, σ^{2}, of this population of coins
[3 marks]
ii. Three coins are picked at random. Determine the probability distribution of the variable Y where Y is "the number of sh 10 coins chosen".
(c) The random variable Khas a binomial distribution with parameters $n=25$ and $p=0.27$. Find $P(K \leq 1)$
[2 marks]
(d) Find the moment generating function (MGF) of a random variable, X, which has a probability distribution given by $f(x)=\left\{\begin{array}{cc}\frac{1}{8}\binom{3}{x} & \text { for } x=0,1,2 \text { and } 3 \\ 0 & \text { otherwise }\end{array} \quad\right.$ and use the MGF obtained to determine the $\operatorname{Var}(X)$
[4 marks]
(e) The growth of a sunflower plant is found to be normally distributed with a mean of 10 and a variance of 7.5 . Find the probability that a sunflower picked at random will have a height between 8 m and 13 m (inclusive).
(f) Let x and y be jointly distributed random variables with joint probability density function $f(x)=\left\{\begin{array}{rc}x+y & 0<x 1,0<y<1 \\ 0 & \text { otherwise }\end{array}\right.$ Determine whether x and y are independent

QUESTION TWO

a) X is a random variable with the probability distribution, $f(x)$, given by $f(x)=\left\{\begin{array}{cc}\frac{x+1}{20} & \text { for } x=1,2,3,4,5 \\ 0 & \text { otherwise }\end{array} \quad\right.$ Find the
i. Distribution function of X
ii. $\quad P(2 \leq X<4)$
b) Two discs are drawn at random, without replacement, from a box containing 3 red discs and 4 white discs. If X is the random variable "number of red discs drawn", find
i. The expected number of red discs
ii. The standard deviation of X.
c) A continuous random variable, X, has the probability density function $f(x)$ given by $f(x)=$
$\left\{\begin{array}{cc}k x & \text { for } 0 \leq x<2 \\ \frac{1}{2} k x(4-x) & \text { for } 2 \leq x \leq 4 \\ 0 & \text { otherwise }\end{array}\right.$ where k is a constant. Find the
$\begin{array}{ll}\text { i. } & \text { Value of } k \\ \text { ii. } & E(X) \text { and } \operatorname{Var}(X)\end{array}$
[2 marks]
[6 marks]

QUESTION THREE

(a) (i) Write in terms of the derivatives of the moment generating function (mgf), expressions for the mean and variance of a random variable, X.
[2 marks]
(ii) X is a random variable with moment generating function $m_{x}(t)=e^{4(t-1)}$. Obtain the mean and the variance of X
(iii)Let X be a random variable with probability density function given by $f(x)=$
$\left\{\begin{array}{l}\lambda e^{-\lambda x} \\ 0\end{array}\right.$
$x>0$
therwise . Derive the mgf of X
[4 marks]
(b) A manufacturer supplies DVD players to retailers in batches of 20.5% of the players are returned because they are faulty
i. Write down a suitable model for the distribution of the number of faulty DVD players in a batch.
[2 marks]
Find the probability that a batch contains no faulty DVD players
[2 marks]
ii. Find the mean and variance of faulty DVD players in a batch

QUESTION FOUR

(a) Two random variables x and y have joint probability distribution as shown:

x					
y		1	2	3	
	1	0.1	0.25	0.35	
	2	0.15	0.1	0.05	

Find
i. $\quad P(y=2 / x=3)$
[1 mark]
ii. $\quad P(x<3, y=2)$
iii. The covariance of x and y
(b) The joint probability density of x and y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{4}(2 x+y) & \text { for } 0<x<1,0<y<2 \\
0 & \text { elsewhere }
\end{array}\right. \text { Find the }
$$

i. Marginal density of X
ii. Conditional distribution of Y, given that $X=\frac{1}{4}$
(c) A café serves breakfast every morning. Customers arrive for breakfast at random at a rate of 1 every 6 minutes. Find the probability that fewer than 9 customers arrive for breakfast on Monday morning between 10 am and 11 am .

QUESTION FIVE

(a) Jean catches a bus to work every morning. According to the time table, the bus is due at 8.00 am but Jean knows that the bus can arrive at a random time between 5 minutes early and 9 minutes late. The random variable X represents the time, in minutes, after 7.55 am when the bus arrives.
i. \quad Suggest a suitable model for the distribution of X and specify it fully.
[2 marks]
ii. Calculate the mean time of arrival of the bus.
[3 marks]
iii. Find the cumulative distribution of X.
[4 marks]
iv. Jean will be late for work if the bus arrives after 8.05 am . Find the probability that Jean is late for work
[2 marks]
(b) A discrete random variable Y has the probability distribution as follows:

Y	1	2	3	4	5
$P(Y=y)$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{4}{15}$	$\frac{5}{15}$

i. Write down the probability generating function $G_{Y}(\mathrm{t})$ for the random variable Y
ii. \quad Find the value of $G_{Y}(t)$ at $t=1$

QUESTION SIX

(a) A discrete random variable X has the distribution function, $F(x)$ given by

$$
F(x)=\left\{\begin{array}{cc}
& 0 \\
\frac{1}{3} & \text { for } 0<-1 \\
\frac{\text { for }-1 \leq x<1}{3} & \text { for } 1 \leq x<3 \\
\frac{1}{2} & \text { for } 3 \leq x<5 \\
\frac{5}{6} & \text { for } 3 \\
& 1
\end{array} \text { for } x \geq 540\right. \text {. }
$$

.Find
i. The probability distribution, $f(x)$, of X
ii. $\quad P(X \leq 3)$
iii. $\quad P(-0.4<X<4)$
iv. $\quad \operatorname{Var}(6 X+11)$
(b) A bag contains 3 red balls and 1 blue ball. A second bag contains 1 red ball and 1 blue ball. A ball is picked from each bag and placed in the other bag. What is the expected number of red balls in the first bag?

