

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>**TWO</u>** <u>**SECOND**</u> SEMESTER EXAMINATION</u>

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION

COURSE CODE: STA 211

COURSE TITLE: PROBABILITY AND STATISTICS II

EXAMINATION DURATION: 3 HOURS

DATE: 18/04/18

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of FOUR (4) printed pages

please turn over

QUESTION ONE (COMPULSORY)

(a) A continuous random variable, X, has probability density function, f(x), given by

$$f(x) = \begin{cases} kx & 0 \le x \le 10 \\ 0 & otherwise \end{cases}$$
 Find
i. The value of k [2 marks]
ii. $P(X > 6)$ [2 marks]
iii. Calculate the exact value of $E(X)$ and $Var(X)$ [2 marks]
iii. Calculate the exact value of $E(X)$ and $Var(X)$ [2 marks]
(b) A bag contains a large number of ksh 5 coins and ksh 10 coins in the ratio 1:3.
i. Find the mean, μ , and the variance, σ^2 , of this population of coins [3 marks]
ii. Three coins are picked at random. Determine the probability distribution of the
variable Y where Y is "the number of sh 10 coins chosen". [3 marks]
(c) The random variable K has a binomial distribution with parameters $n = 25$ and $p = 0.27$. Find
 $P(K \le 1)$ [2 marks]
(d) Find the moment generating function (MGF) of a random variable, X , which has a probability
distribution given by $f(x) = \begin{cases} \frac{1}{6} \binom{3}{x} & for x = 0, 1, 2 & and 3 \\ 0 & otherwise \end{cases}$ and use the MGF obtained to
determine the $Var(X)$ [4 marks]
(e) The growth of a sunflower plant is found to be normally distributed with a mean of 10 and a
variance of 7.5. Find the probability that a sunflower picked at random will have a height between
 $8m$ and $13m$ (inclusive). [4 marks]
(f) Let x and y be jointly distributed random variables with joint probability density function
 $f(x) = \begin{cases} x + y & 0 < x 1, 0 < y < 1 \\ 0 & otherwise \end{cases}$ Determine whether x and y are independent
 $f(x) = \begin{cases} x + y & 0 < x 1, 0 < y < 1 \\ 0 & otherwise \end{cases}$ [3 marks]

a) X is a random variable with the probability distribution, f(x), given by

 $f(x) = \begin{cases} \frac{x+1}{20} & \text{for } x = 1,2,3,4,5 \\ 0 & \text{otherwise} \end{cases}$ Find the i. Distribution function of X [2 marks] ii. $P(2 \le X < 4)$ [1 mark] b) Two discs are drawn at random, without replacement, from a box containing 3 red discs and 4 white discs. If X is the random variable "number of red discs drawn", find i. The expected number of red discs [2 marks]

- ii. The standard deviation of *X*. [2 marks]
- c) A continuous random variable, X, has the probability density function f(x) given by $f(x) = \int_{-\infty}^{\infty} f(x) dx$

$$\begin{cases} kx & for \ 0 \le x < 2\\ \frac{1}{2}kx(4-x) & for \ 2 \le x \le 4 \\ 0 & otherwise \\ i. & Value of k \end{cases}$$
 where k is a constant. Find the **[2 marks]**

ii. E(X) and Var(X) [6 marks]

QUESTION THREE

- (a) (i) Write in terms of the derivatives of the moment generating function (mgf), expressions for the mean and variance of a random variable, X. [2 marks]
 (ii) X is a random variable with moment generating functionm_x(t) = e^{4(t-1)}. Obtain the mean and the variance of X [3 marks]
 (iii) Let X be a random variable with probability density function given by f(x) = { λe^{-λx} x > 0 0 otherwise
 (b) A manufacturer supplies DVD players to retailers in batches of 20. 5% of the players are
- (b) A manufacturer supplies DVD players to retailers in batches of 20. 5% of the players are returned because they are faulty
 - i.Write down a suitable model for the distribution of the number of faulty DVD
players in a batch.[2 marks]Find the probability that a batch contains no faulty DVD players[2 marks]
 - ii. Find the mean and variance of faulty DVD players in a batch [2 marks]

QUESTION FOUR

(a) Two random variables x and y have joint probability distribution as shown:

x							
у		1	2	3			
	1	0.1	0.25	0.35			
	2	0.15	0.1	0.05			

Find

i. $P(y = 2/x = 3)$ ii. $P(x < 3, y = 2)$	[1 mark] [2 marks]
iii. The covariance of x and y	[2 marks]
(b) The joint probability density of x and y is given by	
$f(x,y) = \begin{cases} \frac{1}{4}(2x+y) & \text{for } 0 < x < 1, 0 \\ 0 & \text{elsewhete} \end{cases}$	$< y < 2_{\text{Find the}}$
i. Marginal density of X	[3 marks]
ii. Conditional distribution of Y, given that $X = \frac{1}{4}$	

(c) A café serves breakfast every morning. Customers arrive for breakfast at random at a rate of 1 every 6 minutes. Find the probability that fewer than 9 customers arrive for breakfast on Monday morning between 10 am and 11 am.

QUESTION FIVE

- (a) Jean catches a bus to work every morning. According to the time table, the bus is due at 8.00 am but Jean knows that the bus can arrive at a random time between 5 minutes early and 9 minutes late. The random variable *X* represents the time, in minutes, after 7.55 am when the bus arrives.
 - i. Suggest a suitable model for the distribution of X and specify it fully.
 - ii. Calculate the mean time of arrival of the bus.
 - iii. Find the cumulative distribution of *X*.
 - iv. Jean will be late for work if the bus arrives after 8.05 am. Find the probability that Jean is late for work [2 marks]
- (b) A discrete random variable Y has the probability distribution as follows:

Y	1	2	3	4	5
P(Y=y)	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{4}{15}$	5 15

i. Write down the probability generating function $G_Y(t)$ for the random variable Y

ii. Find the value of $G_Y(t)$ at t = 1

QUESTION SIX

(a) A discrete random variable X has the distribution function, F(x) given by

$$F(x) = \begin{cases} 0 & for \ 0 < -1 \\ \frac{1}{3} & for \ -1 \le x < 1 \\ \frac{1}{2} & for \ 1 \le x < 3 \\ \frac{5}{6} & for \ 3 \le x < 5 \\ 1 & for \ x \ge 5 \end{cases}$$

.Find

i.	The probability distribution, $f(x)$, of X	[3 marks]
ii.	$P(X \leq 3)$	[2 marks]
iii.	P(-0.4 < X < 4)	[2 marks]
iv.	Var(6X + 11)	[4 marks]

(b) A bag contains 3 red balls and 1 blue ball. A second bag contains 1 red ball and 1 blue ball. A ball is picked from each bag and placed in the other bag. What is the expected number of red balls in the first bag?
[4 marks]

4

Good Luck – Exams Office

[2 marks]

[3 marks]

[4 marks]

[2 marks]

[2 marks]