

GARISSA UNIVERSITY COLLEGE

(A Constituent College of Moi University)

UNIVERSITY EXAMINATION 2016/2017 ACADEMIC YEAR <u>ONE</u> <u>SECOND</u> SEMESTER EXAMINATION

SUPPLEMENTARY/SPECIAL EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: ECO 113

COURSE TITLE: INTRODUCTION TO MATHS II

EXAMINATION DURATION: 3 HOURS

DATE: 28/09/17

TIME: 2.00-5.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of TWO (2) printed pages

Supplementary / special exam

Good Luck – Exams Office

please turn over

QUESTION ONE (COMPULSORY)

(a) Define the following terms:

i.	Consumer's surplus	[1 mark]
----	--------------------	----------

- ii. (Producers' surplus [1 mark]
- (b) The growing value of the Gross National Product (GNP) is given by

$$GNP_r = GNP_0 e^{rr}$$
 and $r = 1.5\%$
After how many years will the GNP will triple? [3 marks]

(c) Find the equilibrium price and quantity for the following single commodity market [4 marks] Model using Cramer's rule

$$Q_{d} = 14 - P$$

$$Q_{s} = -4 + 0.5P$$

$$\overline{Q_{d}} = \overline{Q_{s}} = \overline{Q}$$

(d) The national income determination model for a closed economy is given by

Y = C + IWhere C = C(t), I = I(t), Y = Y(t)

Find the growth rate of *y* if the growth rates of *C* and *I* are 3% p.a and 4.5% p.a while the levels of Y, C and I are 200,80 and 120 respectively. [3 marks]

- (e) Given the total costs (TC) function, $TC = Q^3 8Q^2 + 20Q + 15$, compute the level of the output Q at which the total costs are minimized. [5 marks]
- (f) Find the critical value of the following univariate logarithmic function
- $y = In(3x^2 12x + 5)$ and confirm that the critical value presents a maximum. [4 marks] [4 marks]
- (g) Discuss the dynamic stability of the function, $y(t) = 4e^{-2t} + 3$

QUESTION TWO

- (a) Given the marginal cost (MC) function, $MC = 15 + 10Q 6Q^2$ and TC = 50 when Q = 0. Find the total cost (TC) function. [3 marks]
- (b) A firm in a perfectly competitive market has the following demand (P), total variable costs (TVC) and total fixed costs (TFC) functions:

2

$$P = 12.1$$

$$TVC = \frac{1}{20}Q^{3} - 1.5Q^{2} + 17.5Q$$

$$TFC = 50$$

Required:

i.	Find the total costs (TC), total revenue (TR) and π (profit) function.	[3 marks]
ii.	Find the output level at which profits is maximized	[6 marks]
iii.	Compare the resulting marginal costs (MC) and the marginal revenue (MR) at the profit	
	maximizing point.	[3 marks]

QUESTION THREE

(a) A firm employing labor as the only factor input has the following production function

 $Q = f(L) = Le^{-0.2L}$

Where Q = output and L = labor input

Required:

	i.	Find the critical value of L.	[2 marks]		
	ii.	Confirm that the critical value of L maximizes Q.	[5 marks]		
(b) Find the consumers' surplus, given that the demand function, $P = 13 - Q^2$ and equilibrium price,					
	$P_e = 4$		[4 marks]		
(c)]	Find tl	ne producers' surplus, given that the demand function, $P = 3 + Q^2$ ar	nd equilibrium		

Price,
$$P_e = 19$$
 [4 marks]

QUESTION FOUR

(a) You are given the following national income model:

Y = C + I + G C = 120 + 0.8Y I = 100 + 0.1YG = 300

Required:

- i. Present this model in matrix form [1 mark]
- ii. Using Cramer's rule, find the endogenous variables Y, C and I. [6 marks]

(b) A multinational corporation produces a wide range of electronic products.

 P_1 represents the profits from the sales of a new DVD player.

 P_2 represents profits from the sales of a new plasma TV set.

*P*₃ represents profits from the sales of Hifi system.

The economics department believes that the profits in \$ are linked as follows:

 $P_1 + 2P_2 + P_3 = 40000$ $3P - 4P_2 - 2P_3 = 20000$ $5P_1 + 3P_2 + 5P_3 = -10000$

Required:

Work out the profits of each product using matrix inverse and interpret your answers. [8 Marks]

QUESTION FIVE

(a) Consider the following market model:

$$\frac{dP}{dt} = \gamma \left[D(P) - S(P) \right]$$

$$D(P) = 4 - 0.2P$$

$$S(P) = -2 + 0.3P$$

Where $\gamma = \frac{1}{2}$, $D(P)$ = Demand Function, $S(P)$ = Supply Function. Given that $t = 0$
When $P(0) = 25$,

Required:

- i. Form a differential equation from the given equations. [2 marks]
- ii. Find the general solution to the differential equation. [6 marks]
- iii. Find the unique solution to the differential equation. [2 marks]
- (b) The price elasticity of demand is given by

$$\varepsilon_{Q,P} = \frac{-(7P+4P^2)}{Q}$$

And Q = 800 when P = 5.

Required:

Construct a differential equation and solve the equation to obtain a demand function. [5 marks]

QUESTION SIX

A land speculator has a piece of land whose value grows according to the following function

 $V = 100e^{3\sqrt{t}}$

Where: V = the value of the land at time "t"

t = time

100= the value of the land at time t = 0

Required:

Given a discount rate of 8 % under continuous compounding, determine the time over which he must keep the land so as to maximize its present value? Check the second order condition. [15 marks]

Supplementary / special exam

Good Luck – Exams Office

