GARISSA UNIVERSITY COLLEGE

(A Constituent College of Moi University)

UNIVERSITY EXAMINATION $2016 / 2017$ ACADEMIC YEAR ONE SECOND SEMESTER EXAMINATION
 SUPPLEMENTARY/SPECIAL EXAMINATION
 SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
 FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: ECO 113
COURSE TITLE: INTRODUCTION TO MATHS II
EXAMINATION DURATION: 3 HOURS

DATE: 28/09/17
TIME: 2.00-5.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) Define the following terms:
i. Consumer's surplus
ii. (Producers' surplus
(b) The growing value of the Gross National Product (GNP) is given by $G N P_{t}=G N P_{0} e^{r t}$ and $r=1.5 \%$

After how many years will the $G N P$ will triple?
(c) Find the equilibrium price and quantity for the following single commodity market

Model using Cramer's rule
$Q_{d}=14-P$
$Q_{s}=-4+0.5 P$
$\overline{Q_{d}}=\overline{Q_{s}}=\bar{Q}$
(d) The national income determination model for a closed economy is given by
$Y=C+I$
Where ${ }^{C=C(t)}, \quad I=I(t), \quad Y=Y(t)$
Find the growth rate of Y if the growth rates of C and I are 3% p.a and 4.5% p.a while the levels of Y, C and I are 200,80 and 120 respectively.
(e) Given the total costs (TC) function, $T C=Q^{3}-8 Q^{2}+20 Q+15$, compute the level of the output Q at which the total costs are minimized.
(f) Find the critical value of the following univariate logarithmic function $y=\operatorname{In}\left(3 x^{2}-12 x+5\right)$ and confirm that the critical value presents a maximum.
(g) Discuss the dynamic stability of the function, $y(t)=4 e^{-2 t}+3$

QUESTION TWO

(a) Given the marginal cost (MC) function, $M C=15+10 Q-6 Q^{2}$ and $T C=50$ when $Q=0$. Find the total cost (TC) function.
(b) A firm in a perfectly competitive market has the following demand (P), total variable costs (TVC) and total fixed costs (TFC) functions:
$P=12.1$
$T V C=\frac{1}{20} Q^{3}-1.5 Q^{2}+17.5 Q$
$T F C=50$

Required:

i. Find the total costs (TC), total revenue (TR) and π (profit) function.
ii. Find the output level at which profits is maximized
iii. Compare the resulting marginal costs (MC) and the marginal revenue (MR) at the profit maximizing point.

QUESTION THREE

(a) A firm employing labor as the only factor input has the following production function $Q=f(L)=L e^{-0.2 L}$

Where $Q=$ output and $L=$ labor input

Required:

i. Find the critical value of L.
ii. Confirm that the critical value of L maximizes Q .
(b) Find the consumers' surplus, given that the demand function, $P=13-Q^{2}$ and equilibrium price, $P_{e}=4$.
(c) Find the producers' surplus, given that the demand function, $P=3+Q^{2}$ and equilibrium

Price, $P_{e}=19$
[4 marks]

QUESTION FOUR

(a) You are given the following national income model:
$Y=C+I+G$
$C=120+0.8 Y$
$I=100+0.1 Y$
$G=300$

Required:

i. Present this model in matrix form
ii. Using Cramer's rule, find the endogenous variables \bar{Y}, \bar{C} and \bar{I}.
(b) A multinational corporation produces a wide range of electronic products.
P_{1} represents the profits from the sales of a new DVD player.
P_{2} represents profits from the sales of a new plasma TV set.
P_{3} represents profits from the sales of Hifi system.
The economics department believes that the profits in $\$$ are linked as follows:

$$
\begin{aligned}
& P_{1}+2 P_{2}+P_{3}=40000 \\
& 3 P-4 P_{2}-2 P_{3}=20000 \\
& 5 P_{1}+3 P_{2}+5 P_{3}=-10000
\end{aligned}
$$

Required:

Work out the profits of each product using matrix inverse and interpret your answers.

QUESTION FIVE

(a) Consider the following market model:

$$
\begin{aligned}
& \frac{d P}{d t}=\gamma[D(P)-S(P)] \\
& D(P)=4-0.2 P \\
& S(P)=-2+0.3 P
\end{aligned}
$$

Where $\gamma=\frac{1}{2}, D(P)=$ Demand Function, $S(P)=$ Supply Function. Given that $t=0$
When ${ }^{P(0)}=25$,

Required:

i. Form a differential equation from the given equations.
ii. Find the general solution to the differential equation.
iii. Find the unique solution to the differential equation.
(b) The price elasticity of demand is given by
$\varepsilon_{Q, P}=\frac{-\left(7 P+4 P^{2}\right)}{Q}$
And $Q=800$ when $P=5$.

Required:

Construct a differential equation and solve the equation to obtain a demand function.

QUESTION SIX

A land speculator has a piece of land whose value grows according to the following function

$$
V=100 e^{\sqrt[3]{t}}
$$

Where: $v=$ the value of the land at time " t "
$t=$ time

$$
100=\text { the value of the land at time } t=0
$$

Required:

Given a discount rate of 8% under continuous compounding, determine the time over which he must keep the land so as to maximize its present value? Check the second order condition.

