GARISSA UNIVERSITY COLLEGE

(A Constituent College of Moi University)

UNIVERSITY EXAMINATION $2016 / 2017$ ACADEMIC YEAR ONE SECOND SEMESTER EXAMINATION
 SUPPLEMENTARY/SPECIAL EXAMINATION
 SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
 FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: MAT 104
COURSE TITLE: BASIC MATHEMATICS AND ANALYTIC GEOMETRY

EXAMINATION DURATION: 3 HOURS

DATE: 28/09/17
TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) State whether the locus traced by the path given by the equation defines a circle in $\mathbb{R}: x^{2}+y^{2}+$ $2 x+12 y+112=0$
(b) Solve for x between 0^{0} and 180° in the equation $2 \tan x=1+\cot x$
(c) (i)In an election, a voter may vote for any number of candidates not greater than the number chosen. There are seven candidates and four members to be chosen. In how many ways can a person vote
(ii) 4 men and 3 women are to be seated for a dinner such that no 2 women sit together. Find the number of ways in which this can be arranged
(d) Using an illustrated diagram, describe briefly what you understand by the following terms as used in conic sections: parabola, focus and directrix
(e) Find the equation of the chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ joining the points whose eccentric angles are θ, \varnothing
[5 Marks]
(f) Obtain the equation of the circle which passes through the points $(1,2),(2,3)$ and $(4,0)$

QUESTION TWO

(a) Given that $\sin (x+\alpha)=\sqrt{2} \cos (x-\alpha)$ show that $\tan x=\frac{\sqrt{2} \tan \alpha}{1-\sqrt{2} \tan \alpha}$ Hence solve the equation $\sin (x+\pi / 6)=\sqrt{2} \cos (x-\pi / 6)$ for $0 \leq x \leq 2 \pi$
(b) Prove the trigonometric identity: $\operatorname{Tan} A+\operatorname{Cot} A=2 \operatorname{Cosec} 2 A$
(c) Eliminate θ given that $x=\sec \theta+\tan \theta ; y=\sec \theta-\tan \theta$

QUESTION THREE

(a) Show that if x is small enough for its cube and higher powers to be neglected, $\sqrt{\frac{x-1}{x+1}}=1-x+$ $\frac{x^{2}}{2}$.Hence or otherwise, by putting $x=\frac{1}{8}$ show that $\quad \sqrt{7} \cong 2 \frac{83}{128}$
(b) Prove that $2 \operatorname{Cosh}^{2} \theta-1=\operatorname{Cosh} 2 \theta$
(c) Solve the hyperbolic equation $5 \operatorname{Cosh} x+\operatorname{Sinh} x=7$
(d) Express $\operatorname{Sinh}^{-1} x$ in logarithmic form and hence find the value of $\operatorname{Sinh}^{-1} 1.534$

QUESTION FOUR

(a) (i) State without proof, the factor theorem
(ii) Solve the polynomial equation $2 x^{3}+3 x^{2}-32 x+15=0$
(b) Show that there are 136 ways of selecting 4 letters from the word "EXAMINATION"
[3 Marks]
(c) Describe the motion of the particle whose position $P(x, y)$ at a time t is given by $x=\sec t, y=$ $\tan t,-\frac{\pi}{2}<t<\frac{\pi}{2}$
(d) Show that the distance of a point $\mathrm{P}\left(x_{1}, y_{1}\right)$ to a line $a x+b y+c=0$ in a Cartesian plane is given by:

$$
\mathbf{r}=\left|\frac{\mathrm{a} x_{1}+\mathrm{b} y_{1}+\mathrm{c}}{\sqrt{a^{2}+b^{2}}}\right| .
$$

QUESTION FIVE (15 MARKS)

(a) Find the angle between the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$
(b) Discuss the parabola $x^{2}-x=6-3 y$
(c) (i) Find the equation of the tangent to the curve $4 x^{2}+9 y^{2}=36$ at the point $\left(1, \frac{4}{3} \sqrt{2}\right)$
(ii)What is the tangent of the acute angle between the pair of lines whose equations are $3 y=x-7$ and $2 y=3-4 x$

QUESTION SIX

(a) Prove the Binomial Theorem $(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$.
[7 Marks]
(b) Find a complete graph of $r=\frac{6}{4-3 \cos \theta}$.Specify a directrix and a range for θ that produces a complete graph. Find the standard form for the equation of the conic.

