GARISSA UNIVERSITY COLLEGE

(A Constituent College of Moi University)

UNIVERSITY EXAMINATION $2016 / 2017$ ACADEMIC YEAR ONE SECOND SEMESTER EXAMINATION
 SUPPLEMENTARY/SPECIAL EXAM
 SCHOOL OF EDUCATION, BIOLOGICAL AND PHYSICAL SCIENCES
 FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: MAT 111
COURSE TITLE: GEOMETRY AND ELEMENTARY APPLIED MATHEMATICS

EXAMINATION DURATION: 3 HOURS

DATE: 26/09/17
TIME: 09 .00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) Define the following terms as used in Geometry:
i. a circle
ii. eccentricity, e of an ellipse
iii. the conjugate axis of a hyperbola
iv. the dot product of two vectors \boldsymbol{u} and \boldsymbol{v}
v. the vector projection \boldsymbol{u} onto \boldsymbol{v}.
[5 marks]
(b) A car moving with constant acceleration covers the distance between two points 200 m in 10 seconds.Its speed as it passes the second point is $80 \mathrm{~km} / \mathrm{h}$. find its speed at the first point and the acceleration of the car.
[3 marks]
(c) With the help of a sketch diagram, compute the distance from a point $S(1,1,3)$ to the plane given by the equation $x-2 y+6 z=6$.
[6 marks]
(d) Find the angle between the planes $6 x+6 y-3 z=5$ and $x-2 y+2 z-4=0$. (4marks)
(e) Describe the motion of a particle whose position $P(x, y)$ at a time t is given by $x=a \cos t, y=b \sin t, 0 \leq t \leq 2 \pi$
(f) Express in polar co-ordinates the position $(-5,2)$

QUESTION TWO

(a) Prove that the standard form of an equation of an ellipse, with centre (h, k) and major and minor axes of lengths $2 a$ and $2 b$ respectively, where $a>b$ is given by $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$.
(b) Analyze the graph of the equation $4 x^{2}-3 y^{2}+8 x+16=0$.

QUESTION THREE

(a) Prove that the angle between two vectors $\boldsymbol{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\boldsymbol{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ isgiven by

$$
\begin{equation*}
\theta=\cos ^{-1} \frac{\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)}{|u||v|} \tag{5marks}
\end{equation*}
$$

(b) Find the area of the triangle $P Q R$ with vertices $P(1,2,0), Q(3,0,-3)$ and $R(5,2,6)$
(c) (i) When are three non-zero vectors said to be coplanar? Verify that the vectors $\boldsymbol{a}=(2,3,-1), \boldsymbol{b}=(1,-1,3)$ And $\boldsymbol{c}=(1,9,-11)$ are coplanar.
(ii) Find the volume of the parallelepiped determined by $\boldsymbol{u}=\boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}, \boldsymbol{v}=-2 \boldsymbol{i}+3 \boldsymbol{k}$ and $\boldsymbol{w}=7 \boldsymbol{j}-4 \boldsymbol{k}$.

QUESTION FOUR

(a) A force $\boldsymbol{F}=2 \boldsymbol{i}+\boldsymbol{j}-3 \boldsymbol{k} \quad$ is applied to a spacecraft with velocity $\boldsymbol{v}=3 \boldsymbol{i}-\boldsymbol{j}$.Express \mathbf{F} as a sum of a vector parallel to \boldsymbol{v} and a vector orthogonal to \boldsymbol{v}.
[4 marks]
(b) Find the symmetric equations for the line in which the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$ intersect
(c) i.Given a line L in space and a point P not on L, let \boldsymbol{m} be any parallel vector to L and let Q be any point on L, prove that the shortest distance between P and L is given by
$d=\frac{|m \times Q P|}{|m|}$
[2 marks]
ii. Using results in c (i) above, find the distance between the point $P(4,2,-2)$ and theline L with parametric equations $x=3-2 t, y=6 t, z=-1+9 t$.
[4 marks]

QUESTION FIVE

(a) Show that the area of a plane figure bounded by the polar curve $r=f(\theta)$ and the radius vectors at $\theta=\theta_{1}$ and $\theta=\theta_{2}$ is given by $A=\int_{\theta_{1}}^{\theta_{2}} \frac{1}{2} r^{2} d \theta$.
(b) Find the total area enclosed by the curve $r=2 \cos 3 \theta$.
(c) Find the surface area generated when the arc of the curve $r=5(1+\cos \theta)$ between $\theta=0$ and $\theta=2 \pi$, rotates completely about the initial line.

QUESTION SIX

(a) Find a complete graph of $r=\frac{6}{4-3 \cos \theta}$.Specify a directrix and a range for θ that produces a complete graph. Find the standard form for the equation of the conic.
(b) A block of mass m_{1} lying on an inclined plane is pulled up by a mass m_{2}, the two masses being connected by a light inextensible cord passing over a smooth pulley. Given that the coefficient of static friction between m_{1} and the planeis 0.15 , and that $m_{1}=m_{2}=2.0 \mathrm{~kg}$, determine the acceleration of the masses for a plane inclined at 30° to the horinzotal.

