GARISSA UNIVERSITY COLLEGE

(A Constituent College of Moi University)

UNIVERSITY EXAMINATION $2016 / 2017$ ACADEMIC YEAR ONE SECOND SEMESTER EXAMINATION
 SUPPLEMENTARY/SPECIAL EXAM
 SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
 FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: MAT112
COURSE TITLE: INTEGRAL CALCULUS

EXAMINATION DURATION: 3 HOURS

DATE: 25/09/17
TIME: 2.00-5.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) Evaluate $\int_{1}^{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}+e^{x}\right) d x$
(b) Evaluate $\int \frac{4 x^{2}}{x^{3}-7} d x$
[2 marks]
(c) Express $\frac{4 x+5}{2 x^{2}+5 x+2}$ in partial fractions. Hence solve $\int \frac{4 x+5}{2 x^{2}+5 x+2} d x$
[4 marks]
(d) Use integration by parts to evaluate $\int x^{2} \cos x d x$
[4 marks]
(e) Find the area bounded by the parabola $y=x^{2}-7 x+6$ and the x-axis
(f) Find the volume of the solid generated by rotating about the x - axis the area in the first Quadrant enclosed by $y=x^{2}, y=1, y=4$ and the y-axis
(g) Evaluate $\int_{0}^{\pi / 4} \tan x d x$ by Simpson's rule using four strips

QUESTION TWO

(a) Use appropriate substitution to evaluate $\int x^{2} \sqrt{2 x^{3}+1} d x$
[4 marks]
(b) Express $\frac{x^{2}}{(x-2)\left(x^{2}+1\right)}$ in partial fractions. Hence evaluate $\int \frac{x^{2}}{(x-2)\left(x^{2}+1\right)} d x$
(c) Evaluate $\int e^{x} \cos x d x$

QUESTION THREE

(a) Evaluate $\int \sin ^{4} x d x$
(b) Use appropriate substitution to evaluate $\int \frac{d x}{2 \sin ^{2} x+4 \cos ^{2} x}$
(c) Evaluate $\int \tan ^{-1} x d x$

QUESTION FOUR (15 Marks)

(a) Use appropriate substitution to evaluate $\int \frac{d x}{5+4 \cos x}$
(b) Find the area bounded by bounded by the parabola $y^{2}=4 x$ and line $y=2 x-4$
(c) The area of the segment cut by $y=5$ from the curve $y=x^{2}+1$ is rotated about the x - axis, find the volume generated.

QUESTION FIVE

(a) Integrate by parts: $\int x^{2} \operatorname{In} x d x$
(b) Use integration by parts to evaluate $\int x^{2} e^{3 x} d x$
(c) If $I_{n}=\int x^{n} \cos x d x$, obtain a reduction for I_{n} in terms of I_{n-2} and hence determine $\int x^{2} \cos x d x$

QUESTION SIX

Show that $\int \frac{d Z}{Z^{2}-A^{2}}=\frac{1}{2 A} \operatorname{In}\left|\frac{Z-A}{Z+A}\right|+C$. Hence evaluate $\int \frac{d x}{x^{2}+4 x+2}$
(a) Calculate the value of $4 \int_{0}^{1} \frac{d x}{1+x^{2}}$
(i) By integration
(ii) By Simpson's rule using five ordinates and thus find a value for π correct to 4 d.p.

Comment on the accuracy of your answer

