GARISSA UNIVERSITY COLLEGE

(A Constituent College of Moi University)

UNIVERSITY EXAMINATION $2016 / 2017$ ACADEMIC YEAR ONE SECOND SEMESTER EXAMINATION

SUPPLEMENTARY/SPECIAL EXAM
SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
FOR THE DEGREE OF BACHELOR OF EDUCATION, Bsc AND Bsc (COMPUTER SCIENCE)

COURSE CODE: MAT 113/ MAT110
COURSE TITLE: DIFFERENTIAL CALCULUS/ BASIC CALCULUS

EXAMINATION DURATION: 3 HOURS

DATE: 25/09/17
TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

(a) Evaluate the following limits:
i. $\lim _{x \rightarrow 2}\left\{\frac{x^{2}+x-6}{2 x^{2}-8}\right\}$
[3 Marks]
ii. $\quad \lim _{n \rightarrow \infty}\left\{\frac{(8 x-1)(2 x+1)}{(2 x-1)(x+1)}\right\}$
[4 Marks]
(b) Find the derivatives of the following:
i. $y=\left(2 x^{4}-3 x\right)^{5}$
ii. $\quad y=e^{3 x} \ln 2 x$
iii. $y=\tan ^{-1} x$
(c) Find the equation of the normal to the curve at pointy $=x^{3}+3 x^{2}-2 x-3$ at $(1,-1)$
[4 Marks]
(d) A ladder 10 meters long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at a rate of 3 meters per second. How fast is its height on the wall decreasing when the foot of the ladder is 6 meters away from the wall? [$\mathbf{5}$ marks]

QUESTION TWO

(a) Find the interval in which the function $f(x)=x^{3}-6 x^{2}+3 x+1$ is concave up and concave down.
(b) Find a point on the graph $y=x^{3}$ where the tangent to the chord joining ${ }^{(1,1)}$ and $(3,27)$.
[5 Marks]
(c) Given that $f(x)=\frac{a x+b}{x+1}, \lim _{x \rightarrow 0}\{f(x)\}=2$ and $\lim _{x \rightarrow \infty}\{f(x)\}=1$, find the value of $f(-3)$
[6 Marks]

QUESTION THREE

(a) Differentiate $y=x^{2}$ from the definition of a derivative or using the first principles.
[3 Marks]
(b) Find the gradient of the curve $x=\frac{t}{1+t}, y=\frac{t^{3}}{1+t}$ at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$
[6 Marks]
(c) Find the equation of the tangent and normal to the curve $x^{3}+x^{2} y+y^{3}-7=0$ at the point $x=2, y=1$
[6 Marks]

QUESTION FOUR

(a) The perimeter of a triangle is 8 cm . If one of the sides is 3 cm , what are other the other two sides for maximum area of the triangle
(b) Find the stationary points of the function $y=x^{3}-5 x^{2}+3 x+2$ and distinguish them.
(c) Find the point of inflexion on the graph of the function $y=x^{4}-54 x^{2}-2 x$.

QUESTION FIVE

(a) Differentiate
(i) $y=x^{x}$
[3 Marks]
(ii) $y=\frac{x^{2} \sin x}{\cos 2 x}$
[4 Marks]
(b) A window is in the form of a rectangle, surmounted by a semi-circle. If the perimeter of the window is to be 20 meters, find the dimensions so that the greatest possible amount of light may be admitted
[8 Marks]

QUESTION SIX

(a) Differentiate $y=a^{x}$
[3 Marks]
(b) Verify mean value theorem for the function $f(x)=(x-1)(x-2)(x-3)$ in the interval [0,4] and find c.
(c) Verify Rolle's Theorem for the function $f(x)=e^{2 x}\left(x^{2}-4 x+3\right)$ on $[1,3]$

