GARISSA UNIVERSITY COLLEGE

(A Constituent College of Moi University)

UNIVERSITY EXAMINATION $2016 / 2017$ ACADEMIC YEAR ONE SECOND SEMESTER EXAMINATION
 SUPPLEMENTARY/SPECIAL EXAMINATION
 SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES
 FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: PHY 110
COURSE TITLE: BASIC PHYSICS 1

EXAMINATION DURATION: 3 HOURS

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

a. Define the terms angular velocity and centripetal acceleration
b. If $\mathbf{A}+\mathbf{B}+\mathbf{C}=\mathbf{0}$ and $\mathbf{A}=2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$ and $B=5 \mathbf{i}+6 \mathbf{j}+7 \mathbf{k}$ Find
i. $\quad|\mathbf{C}|$
ii. ii) Angle between \mathbf{C} and the X - axis
c. Differentiate contact and non-contact forces
d. i) What is meant by simple harmonic motion?
ii) Prove that the bob of a simple pendulum may move with simple harmonic motion and find an expression for its period.
e. Considering a body of mass M having an initial velocity u be acted upon by a force F for a time t, so that its final velocity is v. show that $\mathbf{F}=\mathrm{Ma}$
f. A motorcycle stunt rider rides off the edge of a cliff with a horizontal velocity of magnitude $5 \mathrm{~m} / \mathrm{s}$. Find the rider's position and velocity after $1 / 4$ seconds
g. Derive the three equations of motion in a straight line for a body starting motion from rest.
h. A ball is thrown vertically into the air at $50 \mathrm{~m} / \mathrm{s}$. How high will it rise and how long will it take to reach that height? $\mathrm{G}=10 \mathrm{~m} / \mathrm{s}^{2}$
i. Two boxes of mass 80 Kg and 110 Kg are in contact and at rest on a horizontal surface as shown. A 650 N push is exerted on the 80 Kg box in the direction shown. If the coefficient of friction is 0.2 calculate

i. The acceleration of the system
ii. The force each box exerts on the other

QUESTION TWO

(a) A 600 N object is to be given on acceleration of $0.7 \mathrm{~m} / \mathrm{s}^{2}$ Find the unbalanced force acting on it.
(b) Two masses of 0.5 and 0.25 Kg are connected by a light inextensible string, which passes over a smooth pulley. If the system is released from rest with the string taut, find the acceleration of each mass and the distance travelled in 1 sec . from rest.
(c) If a projectile at a point O on the ground is projected with a velocity u at an angle α to the horizontal motion separately show that maximum horizontal range is given by $R=\frac{u^{2}}{g}$
(d) i) State the newton's law of universal gravitation
ii) State the three Kepler's laws of planetary motion

QUESTION THREE

a) Clearly distinguish instantaneous velocity and instantaneous acceleration
b) State and explain two factors affecting centripetal force
c) A conical pendulum consists of a small massive bob of mass M hung from a string of length L and rotating steadily in a horizontal circle of radius R, the bob is displaced at angle ϑ. With the help of diagram Show that its period of oscillation is given by

$$
T=2 \pi \sqrt{\frac{L \operatorname{Cos} \theta}{g}}
$$

d) A stone of mass 0.4 kg is tied to a string of length 0.5 m and whirled in a circle. If the stone revolves uniformly and makes one complete revolution per second, Find its acceleration and the force exerted on the stone by the string

QUESTION FOUR

(a) i) state the law of conservation of linear momentum
ii) Differentiate between elastic and inelastic collisions
iii) A 5 kg lump of clay that is moving at $10 \mathrm{~m} / \mathrm{s}$ to the left strikes a 6 kg lump of clay moving at $12 \mathrm{~m} / \mathrm{s}$ to the right. The two lumps stick together after they collide. Find the final speed of the composite object and the kinetic energy dissipated in the collision.
(b) Clearly distinguish between conservative and non- conservative forces and give one example of each of the forces.
(c) Show that in case of a conservative force the work done round a closed path is zero

QUESTION FIVE

a
i) state the work-energy theorem
ii) State the three Newton's laws of motion
b) A block of mass M_{1} lying on inclined plane at an angle of 30° to the horizontal is pulled up the plane by a mass M_{2}. The two mass are connected by a light inextensible cord passing over a smooth pulley as shown. Given that μ between M_{1} and the plane is 0.15 and that $\mathrm{M}_{1=}$ $\mathrm{M}_{2}=2 \mathrm{~kg}$.
i) Draw the free body diagrams for the two masses
ii) Determine the acceleration of the masses
iii) Determine the tension in the cord

QUESTION SIX

(a) i) Show that work done in compressing an ideal gas at constant temperature is given by

$$
\mathrm{W}=\mathrm{nRT} \ln \frac{v_{2}}{v_{1}}
$$

(ii) How much work is required to compress isothermally 2 g of oxygen initially at STP to half its original volume? (Assume that oxygen behaves as an ideal gas)
(b) Starting with the first law of thermodynamics and using the $d Q=d U+P d V$ equation of state, $P V=R T$; show that the equation of reversible adiabatic change for ideal gas is given by

$$
P V^{\gamma}=\text { Cons } \tan t
$$

