

GARISSA UNIVERSITY COLLEGE

(A Constituent College of Moi University)

UNIVERSITY EXAMINATION 2016/2017 ACADEMIC YEAR <u>ONE</u> <u>SECOND</u> SEMESTER EXAMINATION

SUPPLEMENTARY/SPECIAL EXAMINATION

SCHOOL OF EDUCATION, ARTS AND SOCIAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

COURSE CODE: PHY 122

COURSE TITLE: MODERN PHYSICS

EXAMINATION DURATION: 3 HOURS

DATE: 29/09/17

TIME: 09.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of THREE (3) printed pages

Supplementary / special exam

Good Luck – Exams Office

please turn over

QUESTION ONE (COMPULSORY)

(a) Define the term inertial frame of reference	[1 mark]
(b) Discuss the postulates of the special theory of relativity	[4 marks]
(c) Define Photoelectric effect	[2 marks]
(d) Describe a black body.	[2 marks]
(e) Calcium has a work function of 2.7eV, what is the maximum wavelength that will ca	use emission
from calcium.	[3 marks]
(f) An electron which has been accelerated from rest through a p.d. of 250V. Calculate	
i. The speed	[2 marks]
ii. The de Broglie wavelength	[2 marks]
(g) What is the meaning of nuclear binding energy and how does it relate to the mass effe	ect [2 marks]
(h) A radioactive element has a decay constant $\lambda = 1.36 \text{ x } 10^{-11} \text{ s}^{-1}$, determine how long i	t takes for its
mass to reduce from 2g to 1g	[3 marks]
(i) Show that the length of a 1 meter stick would appear to reduce to near zero if it moves	s at a velocity
approximately equal to that of light past a stationary observer	[4 marks]
QUESTION TWO	
(a) Discuss the aspect of Rutherford's atomic model which contradicted the electromag	gnetic theory.
	[4 marks]

- (b) State the Bohr's postulate and discuss shortfalls of the Bohr's postulates [6 marks]
- (c) Show how de Broglie's wave theory predicts quantization of angula momentum of electron on any orbit of radius r. [5 marks]

QUESTION THREE

- a) (i) Define the term Compton effect and state what does it demonstrates [3 marks]
 - (ii) Calculate a shift in the wavelength of a photon scattered at an angle of 60^0 in the Compton Effect

[4 marks]

b) (i) Light of wavelength 5.0x 10⁻⁷m illuminates a metal whose work function is 2.0eV.Calculate the Maximum kinetic energy in joules of the emitted electrons [4 marks]

2

(ii) Discuss two factors believed to be the cause of radioactivity of radioactive elements [4 marks]

QUESTION FOUR

(a) (i) Discuss the Michelson-Morley experiment and explain the implication of its results [5 marks]

- (ii) Using the inverse Lorentz transformation derive the formula for time dilation [5 marks]
- (b) (i) Differentiate between fission and fusion as used in radioactivity. [2 marks]
 - (ii) Part of the Uranium decay series is shown below

$$\stackrel{238}{}_{92} U \xrightarrow{(1)}{\longrightarrow} \stackrel{234}{}_{90} Th \xrightarrow{(2)}{\longrightarrow} \stackrel{234}{}_{91} Pa \xrightarrow{(3)}{\longrightarrow} \stackrel{234}{}_{92} U$$

What particle is emitted at each decay? [3 marks]

QUESTION FIVE

- (a) Discuss the Davission –Germer experiment stating clearly what its result demonstrate [6 marks]
- (b) Describe how X-rays are produced in a modern X-ray tube, stating factors, which must be taken into consideration to generate X-rays of required quality [5 marks]
- (c) Discuss two factors believed to be the cause of radioactivity of radioactive elements [4 marks]

QUESTION SIX

- (a) Define the term nuclear mass defect [1 mark]
- (b) The solar spectrum has the approximate shape of a blackbody. The peak intensity is found at a wavelength of 4700Å. Calculate the surface temperature of the sun [3 marks]

(c) Show that the energy of an electron is given by
$$E = -\frac{me^4}{8\varepsilon_o^2 n^2 h^2}$$
 (where n = 1,2,3.....)

[7 marks]

(d) Consider a sample with N undecayed nuclei. Show that for such a sample, the number of nuclei remaining after a time t is given as $N = N_o e^{-\lambda t}$ where the symbols have their usual meaning. [4 marks]

