GARISSA UNIVERSITY

UNIVERSITY EXAMINATION $2017 / 2018$ ACADEMIC YEAR ONE THIRD SEMESTER EXAMINATION

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCE
FOR THE DIPLOMA IN INFORMATION TECHNOLOGY

COURSE CODE: DIT 028
COURSE TITLE: DIGITAL ELECTRONICS

EXAMINATION DURATION: 2 HOURS

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

a. Differentiate between intrinsic and extrinsic semiconductors.
b. Define the following terms:

- Conductor
- Insulator
- Semiconductor
c. State six characteristics of semiconductors.
d. Describe briefly how you can obtain a P-N junction using a well-illustrated diagram.
e. Define doping
f. Sketch the p-n junction diode symbols for both forward and reverse bias.

QUESTION TWO

a. What do you understand by the term;
I. 'Quiescent point'
II. Logic gate
b. State the four transistor biasing methods.
c. compute the two's complement of the following binary numbers.

- 10010110
- 10001001

QUESTION THREE

a. Work out as indicated in brackets.

- $\quad(1001.0101)_{2}$ (Binary -to- decimal conversion)
- $\quad(1 \mathrm{E} 0.2 \mathrm{~A})_{16} \quad$ (Hexadecimal - to - decimal conversion
b. State any two (2) advantages of digital systems.
c. Convert the following binary number to its decimal equivalent. (1001.0101)
d. Express the following binary number into their 2's complement.

QUESTION FOUR

a. Define the term transistor.
b. A common emitter transistor has a reverse leakage current, $\mathrm{I}_{\mathrm{CBO}}=48 \mathrm{Na}$ and a gain $\alpha=0.992$.
. \quad Find β and $\mathrm{I}_{\text {CEO }}$

- Find its exact collector current when $\mathrm{I}_{\mathrm{B}}=30 \mu \mathrm{~A}$.
. Find the approximate collector current neglecting leakage current.
c. State the three types of transistor static characteristics.

QUESTION FIVE

a. Convert the following binary number to their hexadecimal equivalents.
1001.1111
b. Perform the following binary operations
I. $00010011+00111110$
II. (b) $00110011-00010110$
III. (c) 00101001×00000110
c. Provide logical expressions $\mathbf{D}, \mathbf{E} \& \mathbf{Q}$ for the arrangement below.

QUESTION SIX

a. Complete the truth tables below for the basic operators indicated.

AND

\mathbf{A}	\mathbf{B}	\mathbf{R}
0	0	
0	1	
1	0	
1	1	

OR +

A	B	R
0	0	
	1	1
1	0	
1		1

NOT ‘

A	R
	1
1	

b. simplify the following Boolean expression using DeMorgans' theorem

$$
\overline{\mathrm{A}+\overline{\mathrm{BC}}}
$$

c. Represent the simplified expression in a circuit diagram.

