

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR ONE THIRD SEMESTER EXAMINATION

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCE FOR THE DIPLOMA IN INFORMATION TECHNOLOGY

COURSE CODE: DIT 028

COURSE TITLE: DIGITAL ELECTRONICS

EXAMINATION DURATION: 2 HOURS

DATE: 08/08/18 TIME: 9.00-11.00 AM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of FOUR (4) printed pages

please turn over

QUESTION ONE (COMPULSORY)

a.	Differentiate between intrinsic and extrinsic semiconductors.	[4 Marks]
b.	Define the following terms:	[3 Marks]
	• Conductor	
	• Insulator	
	• Semiconductor	
c.	State six characteristics of semiconductors.	[6 Marks]
d.	Describe briefly how you can obtain a P-N junction using a well-illustrated diagram.	[5 marks]
e.	Define doping	[2 Marks]
f.	Sketch the p-n junction diode symbols for both forward and reverse bias.	[5 Marks]
QUI	ESTION TWO	
a.	What do you understand by the term;	
I.	'Quiescent point'	
II.	Logic gate	[3 Marks]
b.	State the four transistor biasing methods.	[4 Marks]
c.	compute the two's complement of the following binary numbers.	
	10010110	[4 Marks]
	10001001	[4 Marks]
QUE	STION THREE	
a.	Work out as indicated in brackets.	
	$(1001.0101)_2$ (Binary –to- decimal conversion)	[3 Marks]
	(1E0.2A) ₁₆ (Hexadecimal – to – decimal conversion	[4 Marks]
b.	State any two (2) advantages of digital systems.	[2 Marks]
c.	Convert the following binary number to its decimal equivalent.	[3 Marks]
	(1001.0101)	
d.	Express the following binary number into their 2's complement.	[3 Marks]
	10010110	

QUESTION FOUR

a. Define the term transistor.

[2 Marks]

b. A common emitter transistor has a reverse leakage current, $I_{CBO} = 48$ Na and a gain $\alpha = 0.992$.

• Find β and I_{CEO}

[4 Marks]

• Find its exact collector current when $I_B = 30 \mu A$.

[4 Marks]

• Find the approximate collector current neglecting leakage current.

[2 Marks]

c. State the three types of transistor static characteristics.

[3 Marks]

QUESTION FIVE

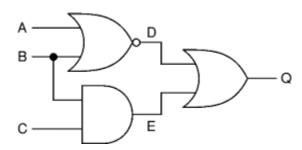
a. Convert the following binary number to their hexadecimal equivalents.

[3 Marks]

1001.1111

b. Perform the following binary operations

[6 Marks]


I. 00010011 + 001111110

II. (b) 00110011 – 00010110

III. (c) 00101001 x 00000110

c. Provide logical expressions **D**, **E** &**Q** for the arrangement below.

[6 Marks]

QUESTION SIX

a. Complete the truth tables below for the basic operators indicated.

[6 Marks]

AND

A	В	R
0	0	
0	1	
1	0	
1	1	

OR +

A	В	R
0	0	
	1	1
1	0	
1		1

NOT '

A	R
	1
1	

b. simplify the following Boolean expression using DeMorgans' theorem

[5 Marks]

$$\overline{A + BC}$$

c. Represent the simplified expression in a circuit diagram.

[4 Marks]